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Abstract

The study of artificial neural networks has originally been inspired by neurophysiology and cognitive
science. It has resulted in a rich and diverse methodology and in numerous applications to machine
intelligence, computer vision, pattern recognition and other applications. The random neural network
(RNN) is a probabilistic model which was inspired by the spiking behaviour of neurons, and which has an
elegant mathematical treatment which provides both its steady-state behaviour and offers efficient learn-
ing algorithms for recurrent networks. Second order interactions, where more than one neuron jointly
act upon other cells, have been observed in nature; they generalise the binary (excitatory-inhibitory)
interaction between pairs of cells and give rise to synchronous firing by many cells. In this paper we
develop an extension of the RNN to the case of synchronous interactions which are based on at two
cells that jointly excite a third cell; this local behaviour is in fact sufficient to create synchronous firing
by large ensembles of cells. We describe the system state and derive its stationary solution as well as
a O(N3) gradient descent learning algorithm for a recurrent network with N cells when both standard
excitatory-inhibitory interactions, as well as synchronous firing, are present.

1 Introduction

The spiked random neural network (RNN) model and its gradient based learning algorithm were introduced
in [2, 4, 8], and this model was shown to have a “product form” solution, so that the joint stationary
probability distribution of the excitation state of all the cells in the network is equal to the product of
the stationary marginal probabilities associated with each cell. It was later shown [18, 24] that the RNN
is, like other neural network models, a means of approximating continuous and bounded functions. A
generalisation of the RNN to represent multiple classes of signals was introduced in [19] and its learning
algorithm was applied in [5, 22] to the reproduction and learning of colour image textures, where different
classes of signals are a means to distinguish between the types of spikes that the cells in the network can
exchange. The application of the RNN to the approximate solution of optimisation problems was discussed
in [9, 14], while a similar model was suggested for the analysis of genetic algorithms [15]. An application of
the RNN to the study of cortico-thalamic oscillations is discussed in [16]. The RNN has also been applied
to the control of quality of service based routing for computer networks [21, 26].

Synchronised firing (SF), where several cells fire simultaneously, and neurons jointly act upon other cells,
provide a richer form of inter-cellular interaction than the binary (excitatory-inhibitory) action between
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pairs of cells. SF has been observed among cultured cortical neurons [1, 6] and it is believed that it serves
a prominent role in information processing functions of both sensory and motor systems [11]. Temporal
firing synchrony is a result of functional coupling which dynamically varies according to the internal state
of the neural system and the stimuli. Theoretical and experimental studies show that SF can occur both
in homogeneous and clustered neuronal networks [20], and it was found out that under special population
density conditions a neuronal culture can self-organise into linked neuron clusters [23]. These clustered
neurons can generate synchronous firing activity similar to the one observed in homogeneous networks
[17, 23] and appears to be related to the correlation in connectivity, which is usually measured in neuron
cultures because it is difficult to identify the synaptic strength among neurons and hence determine the
characteristic node connectivity [25].

In this paper we discuss an extension of the RNN which, in addition to the usual excitatory and
inhibitory interactions between cells, also offers the possibility that cells synchronously act together on
other cells. In this model certain cells can trigger of successive firing instants in other cells. This network
also has “product form”, and we derive its gradient based learning algorithm which is shown to have the
same computational complexity O(N3) for a network with N neurons, as for the recurrent RNN without
synchronous firing patterns as shown in [8].

The model developed in this paper exhibits synchronised firing between cells, where one cell may trigger
firing in another one. In fact, cascades of such triggered firings can occur in the model that we study. It
appears that some the experimental observations of synchronised firing in cultured or sliced neuron cell
ensembles are in fact bursts of firing resulting from the non-linear dynamics of the neuronal interactions.
Our model describes the triggering of firing between two cells and also allows triggered firing by cascades
of cells, and these cascades can also include feedback loops so that lengthy bursts of firing can also be
modelled. Thus the present model can to a certain extent be used to mimic the spike bursts which have
been experimentally observed.

1.1 The mathematical model

We consider a network with N neurons or cells which have independent and exponentially distributed firing
times with firing rates r1, ... , rN ≥ 0. As with the original RNN model, the internal state or excitation
level of a neuron, say neuron i, is represented by the non-negative variable ki(t). We say that the neuron is
excited if ki(t) ≥ 1, and that it is quiescent if ki(t) = 0. A neuron may fire only if it is excited. If a neuron
fires, then its excitation state will drop by 1: thus if neuron i fires at time t, then ki(t+) = ki(t)− 1.

In the original RNN model, neurons interact with each other via excitatory and inhibitory spikes which
are sent out from a neuron when it fires; in the present model we will add one more interaction based on two
cells getting together to act on a third one (the second order interaction) in excitatory mode. Furthermore
neurons can receive excitatory and inhibitory spikes from the outside world (e. g. from a sensory input),
and a cell may fire and send a spike to the outside world. Thus as a whole, the following events can occur
at time t:

• A cell i receives an excitatory spike from the outside world; this increases the value of the internal
state of the receiving neuron by +1. Excitatory spikes arrive to cell i from the outside world according
to a Poisson process of rate Λ(i).

• A cell i receives an inhibitory spike from the outside world at time t; if ki(t) > 0, this decreases the
value of the internal state of the receiving neuron by 1 and has no effect of ki(t) = 0. Inhibitory
spikes arrive to cell i from the outside world according to a Poisson process of rate λ(i).

• Cell i fires at time t, if ki(t) > 0 and the probability of this event is ri∆t + o(∆t) so that the cell
is exponentially distributed with parameter ri. If this happens ki(t+) = ki(t) − 1. The resulting
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spike will go to cell j as an excitatory spike with probability p+(i, j) or as an inhibitory spike with
probability p−(i, j), or the spike departs the network going to the outside world with probability
d(i), or it creates a synchronous interaction together with cell j to affect some third cell m, with
probability Q(i, j,m).

• An excitatory or inhibitory spike arriving to a neuron j from another neuron i is treated by j exactly
the same way as if such spikes arrive from the outside world.

• On the other hand, if at time t a spike from i reaches m to provoke a second order effect on j then
the following happen: of course ki(t+) = ki(t)−1, but also km(t+) = km(t)−1 and kj(t+) = kj(t)+1
if km(t) > 0. However if km(t) = 0 then the only thing that will occur is that ki(t+) = ki(t)− 1, and
the firing of i will have no other effect.

Thus synchronous interactions take the form of a joint excitation by cells i,m on j, and can only occur if
both cell i and m are excited. Note also that:

d(i) = 1−
N∑

j=1

[
p+(i, j) + p−(i, j) +

N∑

m=1

Q(i, j,m)

]
(1)

1.2 Synchronous firing by many cells

Q(i, j,m) is the probability that when i fires, then if j is excited it will also fire, resulting in an exci-
tatory spike being sent to cell m. This synchronous behaviour between i and j can easily be extended
to an arbitrary number of cells. Indeed, we could have a sequence of cells j1, ... , jn+1, jn+2 such that
Q(ji, ji+1, ji+2) = 1 for 1 ≤ i ≤ n. In this case, if cells j1 and j2 are excited, then eventually all the cells
j1, ... , jn+1, jn+2 will fire. Thus the generalised RNN model we have described can be used to model some
quite general forms of synchronised firing.

2 Network behaviour in steady-state

Let the state of the network as a whole be denoted by k(t) = [k1(t), k2(t), ..., kN (t)]. With the assumptions
that have been made about Poisson arrivals, exponential firing times, and with the given probabilities
of spikes going from one cell to another, the system state is a continuous time Markov chain. As a
consequence, the probability distribution of the system state {k(t) : t ≥ 0} satisfies a set of Chapman-
Kolmogorov equations. Let us use the following vectors to denote specific values of the network state,
where all of these vectors’ values must be non-negative:

k = [k1, ..., kN ]

k+
i = [k1, ..., ki + 1, ..., kN ]

k−i = [k1, ..., ki − 1, ..., kN ]

k+−
ij = [k1, ..., ki + 1, ..., kj − 1, ..., kN ]

k++
ij = [k1, ..., ki + 1, ..., kj + 1, ..., kN ]

k++−
ijm = [k1, ..., ki + 1, ..., kj + 1, ..., km − 1, ..., kN ]
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If the steady-state distribution π(k) = lim
t→∞P [k(t) = k] exists, it satisfy the Chapman-Kolmogorov

equations given in steady-state:

π (k)
N∑

i=1

[
Λ(i) + (λ(i) + ri)1{ki>0}

]
=

N∑

i=1

{
π

(
k+

i

)
rid(i) + π

(
k−i

)
Λ(i)1{ki>0} + π

(
k+

i

)
λ(i)

+
N∑

j=1

[
π

(
k+−

ij

)
rip

+(i, j)1{kj>0} +
N∑

m=1

π
(
k+

i

)
riQ(i, j,m)1{kj=0}

+ π
(
k++

ij

)
rip

−(i, j) + π
(
k+

i

)
rip

−(i, j)1{kj=0}

+
N∑

m=1

π
(
k++−

ijm

)
riQ(i, j, m)1{km>0}

]}
(2)

The following is an application of a result earlier shown in [7].

Theorem: Let λ−(i) and λ+(i), i = 1, ...N be given by the following system of equations

λ−(i) = λ(i) +
N∑

j=1

rjqj [p−(j, i) +
N∑

m=1

Q(j, i,m)] (3)

λ+(i) =
N∑

j=1

rjqjp
+(j, i) +

N∑

j=1

N∑

m=1

qjqmrjQ(j, m, i) + Λ(i) (4)

where
qi = λ+(i)/

(
ri + λ−(i)

)
(5)

If a unique non-negative solution {λ−(i), λ+(i)} exists for the non-linear system of equations (3), (4), (5)
such that qi < 1 ∀i ,then:

π (k) =
N∏

i=1

(1− qi) qki
i (6)

The theorem states that whenever a solution can be found to equations (3), (4), (5) such that all the
qi < 1, then the network’s steady-state solution has the simple product form (6). The condition qi < 1
can be viewed as a “stability condition” that guarantees that the excitation level of each neuron remains
finite with probability one. Note also, that the average excitation level of neuron i in steady-state is then
simply qi/(1− qi).

We will now introduce a notation which is similar to the one used in [8], where we replace the firing
rates ri and the probabilities p+(i, j), p−(i, j) and Q(i, j, l) by “weights”, which in this model represent
the rates at which the cells or neurons interact. Let:

w+(i, j) = rip
+(i, j), (7)

w−(i, j) = rip
−(i, j), (8)
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and
w(i, j, l) = riQ(i, j, l) (9)

As a result we can write:

ri =

N∑
j=1

[
w+(i, j) + w−(i, j) +

∑N
m=1 w(i, j, m)

]

1− d(i)
(10)

and the denominator of qi can be written as:

D(i) = ri +
N∑

j=1

qj [w−(j, i) +
N∑

m=1

w(j, i, m)] + λ(i) (11)

while its numerator becomes

N(i) =
N∑

j=1

qjw
+(j, i) +

N∑

j=1

N∑

m=1

qjqmw(j, m, i) + Λ(i) (12)

so that qi = N(i)/D(i). The results summarised in this section will now be used to design an efficient
learning algorithm for this network with second order effects.

3 A gradient descent learning algorithm of computational complexity
O(N 3)

Gradient descent based algorithms in neural networks are used to select the “weights” of the network so
that, if the network is presented with a given input X, the network’s output is a very good match for a
desired output vector y. In our case, the “input vector” X will be the vector of the external excitatory
and inhibitory arrival rates (Λ(1), ... ,Λ(n)) and (λ(1), ... , λ(N)). The output vector on the other hand
will correspond to the steady-state values of the network, for instance a vector of the values taken by the
N probabilities (q1, ... , qN ) which result from applying the input vector to the network. The gradient
descent algorithm is usually provided with a set of input and output vectors which are used to adjust the
network weights so that the difference between the given and obtained outputs is minimised over the set
of inputs vectors.

Now consider a set of K input-output pairs (X,Y), with inputs given by X = [X1,X2, ...,XK ]T , and
Xk = [Λk, λk]

T .

The vectors Λk = [Λk(1), ...,Λk(N)] and λk = [λk(1), ..., λk(N)] are obviously the external arrival rates
of customers and signals entering the N neurons respectively. The K desired outputs are Y =[y

1
, ..., y

K
]T

with y
k
= [yk1, ..., ykN ] where yki ∈ [0, 1] are the desired outputs of the ith neuron for the kth training set.

A learning algorithm computes values of the network weights so as to find a local minimum of a cost
or error function such as:

E =
1
2

K∑

k=1

Ek =
1
2

K∑

k=1

N∑

i=1

ci (fi (qik)− yik)
2 , ci ≥ 0 (13)

where fi (qik) is a differentiable function of qik associated with neuron i and pattern k. If for some reason
we want a particular neuron i not to be considered as an output then we can set ci = 0. Note that more
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general forms of Ek can be selected without significant changes in the algorithm we will consider, as long as
Ek is non-negative, differentiable in all of the qi, and has at least one minimum for the set of all parameter
values w+(i, j), w−(i, j) ≥ 0 and w(i, j, l) ≥ 0.

3.1 Restricting the optimisation to w(i, j, l) = w−(i, j)a(j, l)

In general we can select the w(i, j, l) in an arbitrary manner as long as w(i, j, l) ≥ 0, and w+(i, j), w−(i, j) ≥
0. However we see that w(i, j, l) in fact acts as an inhibitory term from i to j, followed by an excitatory
term from j to l. Thus we propose to simplify the computation involved in seeking a minimum of the cost
function (13) by writing:

w(i, j, l) = w−(i, j)a(j, l), for all 1 ≤ i, j, l ≤ N, (14)

where a(j, l) ≥ 0.

We will therefore design a gradient descent algorithm to obtain the unknown parameters of the network
i.e. the matrices W+ = {w+(i, j)} ,W− = {w−(i, j)} and A = {a(i, j)} for i, j = 1, ..., N in order to
minimize the cost function.

In the sequel we will use the generic term w(u, v) to represent either w(u, v) = w+ (u, v) or w(u, v) =
w− (u, v) or w(u, v) = a (u, v). The weights are updated using the gradient descent rule so that for the
k − th input-output pair, the n− th computational step is:

wk,n+1(u, v) = wk,n(u, v)− η
∂Ek

∂w(u, v)
|w(u,v)=wn(u,v), X=Xk, y=y

k
(15)

where n denotes the update step, η > 0 is known as “the learning rate” and the partial derivative of the
cost function on the right hand side is evaluated using the n − th computed values of the weights. The
derivative of the cost function is obviously:

∂Ek

∂w(u, v)
=

N∑

i=1

ci (fi (qik)− yik)
∂fi(qi)

∂qi

∂qi

∂w(u, v)

∣∣∣∣ w(u, v) = wk−1(u, v), qi = qik−1
(16)

Differentiating qi = N(i)/D(i) with respect to the generic variable w(u, v) yields:

∂qi

∂w(u, v)
=

∂N(i)
∂w(u,v)D(i)

D2(i)
−

∂D(i)
∂w(u,v)N(i)

D2(i)
=

1
D(i)

[
∂N(i)

∂w(u, v)
− ∂D(i)

∂w(u, v)
qi

]
(17)

Next we derive expressions for the derivatives ∂N(i)
∂w(u,v) and ∂D(i)

∂w(u,v) for all three parameters w+ (u, v), w− (u, v)
and a (u, v).

∂N(i)
∂w+(u, v)

=
N∑

j=1

∂qj

∂w+(u, v)
w+ (j, i) + qu1{v=i} +

N∑

j=1

∂qj

∂w+(u, v)

N∑

m=1

w− (j, m) qma(m, i)

+
N∑

j=1

qj

N∑

m=1

∂qm

∂w+(u, v)
w− (j, m) a(m, i) (18)
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∂N(i)
∂w−(u, v)

=
N∑

j=1

∂qj

∂w−(u, v)
w+ (j, i) +

N∑

j=1

∂qj

∂w−(u, v)

N∑

m=1

w− (j, m) qma(m, i)

+
N∑

j=1

qj

N∑

m=1

∂qm

∂w−(u, v)
w− (j, m) a(m, i) + quqva(v, i) (19)

∂N(i)
∂a(u, v)

=
N∑

j=1

∂qj

∂a(u, v)
w+ (j, i) +

N∑

j=1

∂qj

∂a(u, v)

N∑

m=1

w− (j, m) qma(m, i)

+
N∑

j=1

qj

N∑

m=1

∂qm

∂a(u, v)
w− (j, m) a(m, i) +

N∑

j=1

qjquw−(j, u)1{v=i} (20)

∂D(i)
∂w+(u, v)

=
1{u=i}
1− d(i)

+
N∑

j=1

∂qj

∂w+(u, v)

[
w−(j, i) +

N∑

m=1

w−(j, i)a(i,m)

]
(21)

∂D(i)
∂w−(u, v)

= 1{u=i}
1 +

∑N
m=1 a(v,m)

1− d(i)
+ qu1{v=i} + qu

N∑

m=1

a(v, m)1{v=i}

+
N∑

j=1

∂qj

∂w−(u, v)

[
w−(j, i) +

N∑

m=1

w−(j, i)a(i,m)

]
(22)

∂D(i)
∂a(u, v)

=
w−(i, u)
1− d(i)

+
N∑

j=1

qjw
−(j, u)1{u=i}

+
N∑

j=1

∂qj

∂a(u, v)

[
w−(j, i) +

N∑

m=1

w−(j, i)a(i,m)

]
(23)

Substituting (18) and (21) into (17) gives:

∂qi

∂w+(u, v)
=

1
D(i)

N∑

j=1

∂qj

∂w+(u, v)

{
w+(j, i) +

N∑

m=1

qmw−(j,m)a(m, i)

+a(j, i)
N∑

m=1

qmw−(m, j)− qiw
−(j, i)

N∑

m=1

a(i, m)− qiw
−(j, i)

}

+
qu

D(i)

[
1{v=i} −

1{u=i}
1− d(i)

]
(24)
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To derive the above equation we used the fact that:

N∑

j=1

qj

N∑

m=1

∂qm

∂w+(u, v)
w−(j,m)a(m, i) =

N∑

m=1

∂qm

∂w+(u, v)

N∑

j=1

qjw
−(j, m)a(m, i)

=
N∑

j=1

∂qj

∂w+(u, v)

N∑

m=1

qmw−(m, j)a(j, i)

Similarly, for ∂qi

∂w−(u,v)
and ∂qi

∂a(u,v) we obtain:

∂qi

∂w−(u, v)
=

1
D(i)

N∑

j=1

∂qj

∂w−(u, v)

{
w+(j, i) +

N∑

m=1

qmw−(j, m)a(m, i)

+a(j, i)
N∑

m=1

qmw−(m, j)− qiw
−(j, i)

N∑

m=1

a(i,m)− qiw
−(j, i)

}

+
1

D(i)

[
quqva(v, i)− qu1{u=i}

1 +
∑N

m=1 a(v, m)
1− d(i)

− qvqu1{v=i}[1 +
N∑

m=1

a(v, m)]

]
(25)

∂qi

∂a(u, v)
=

1
D(i)

N∑

j=1

∂qj

∂a(u, v)

{
w+(j, i) +

N∑

m=1

qmw−(j,m)a(m, i)

+a(j, i)
N∑

m=1

qmw−(m, j)− qiw
−(j, i)

N∑

m=1

a(i, m)− qiw
−(j, i)

}

+
1

D(i)


qu(1{v=i} − 1{u=i})

N∑

j=1

qjw
−(j, u)− qiw

−(i, u)
1− d(i)


 (26)

Now using the vector notation
q = [q1, q2, ... , qN ] (27)

and defining the N ×N matrix

W =
1

D(j)
·
{

w+(i, j)− qjw
−(i, j) +

N∑

m=1

qmw−(i,m)a(m, j)

+a(i, j)
N∑

m=1

qmw−(m, i)− qjw
−(i, j)

N∑

m=1

a(j, m)

}
i, j = 1, 2, ..., N (28)

then (24) - (26) can be written in vector form as:

∂q

∂w+(u, v)
=

∂q

∂w+(u, v)
W+ γ+(u, v) (29)

∂q

∂w−(u, v)
=

∂q

∂w−(u, v)
W+ γ−(u, v) (30)
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∂q

∂a(u, v)
=

∂q

∂a(u, v)
W+ γ∗(u, v) (31)

where we have used:
γ+(u, v) = [γ+

1 (u, v), γ+
2 (u, v), ..., γ+

N (u, v)], (32)

γ−(u, v) = [γ−1 (u, v), γ−2 (u, v), ..., γ−N (u, v)], (33)

and
γ∗(u, v) = [γ∗1(u, v), γ∗2(u, v), ..., γ∗N (u, v)], (34)

which are given by:

γ+
i (u, v) =

1
D(i)

·





qu − qu/(1− d(i)) u = i, v = i
−qu/(1− d(i)) u = i, v 6= i
qu u 6= i, v = i
0 u 6= i, v 6= i

(35)

γ−i (u, v) =
1

D(i)
·





quqv[a(v, i)− 1−∑N
m=1 a(v,m)]− qu[1 +

∑N
m=1 a(v,m)](1− d(i))−1 v = i, u = i

quqv[a(v, i)− 1−∑N
m=1 a(v,m)] v = i, u 6= i

quqva(v, i)− qu[1 +
∑N

m=1 a(v, m)](1− d(i))−1 v 6= i, u = i
quqva(v, i) v 6= i, u 6= i

(36)

γ∗i (u, v) =
1

D(i)
·





−qiw
−(i, u)(1− d(i))−1 v = i, u = i

−qiw
−(i, u)(1− d(i))−1 + qu

∑N
j=1qjw

−(j, u) v = i, u 6= i

−qiw
−(i, u)(1− d(i))−1 − qu

∑N
j=1qjw

−(j, u) v 6= i, u = i

−qiw
−(i, u)(1− d(i))−1 v 6= i, u 6= i

(37)

Notice that (29) - (31) can also be written as:

∂q

∂w+(u, v)
= γ+(u, v) (I−W)−1 (38)

∂q

∂w−(u, v)
= γ−(u, v) (I−W)−1 (39)

∂q

∂a(u, v)
= γ∗(u, v) (I−W)−1 (40)

where I is the N ×N identity matrix.

3.2 Steps of the algorithm

Let us now summarise the steps for the learning algorithm:

1. Initialize the matrices W+, W− and A and choose a value for η. The larger the value of η, the greater
the change in the weight update in one step.

2. Set the input values for Xk = [Λk, λk]
T and y

k
for a particular k.
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3. Solve the system of the N non-linear equations (3)-(5) based on the above values.

4. Solve the three systems of the N linear equations (38), (39) and (40) using the values of qik obtained.
The complexity of solving these systems is O(N3), because of the matrix inversion operation or
O(mN2) if an m-step relaxation method is adopted.

5. Using the results from Steps 3 and 4, update the matrices W+ = {w+(i, j)}, W− = {w−(i, j)} and
A = {a(i, j)} using (15) and (16). If during some update a particular parameter does not satisfy the
constraint that they must be non-negative, then either the particular update can be repeated with a
smaller value of η or the particular parameter can be set to the closest values within the constraints.

4 Conclusions

Synchronous firing between neuronal cells has been observed in cultured cells, though in some cases this
can be in fact burst firing in groups of cells due to intaracting non-linear properties. Since networks
with such behaviours can potentially have a significant effect on the functional properties of biological
neural networks, this paper studies such systems, proposes a mathematical model based on the spiked
random neural network model, and derives a learning algorithm for such systems in the recurrent case.
The learning algorithm we derive has a computational complexity which is proportional to the cube of
the number of cells. This O(N3) gradient descent learning algorithm for a recurrent network with N cells
includes both the standard excitatory-inhibitory interactions, as well as synchronous firing, within the same
model. Thus we see that the computational complexity of the learning algorithm in this case is of the same
order as for a recurrent network without synchronous interactions. This work opens up the perspective of
further modeling studies where we may build more complex neuronal models in which single cells can fire
synchronous spike trains, or contain otherwise even more complex interactions between cells or between
regions of a very large network.
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