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a b s t r a c t

We introduce a probability model for populations of cells and viruses that interact in the

presence of an anti-viral agent. Cells can be infected by viruses, and their longevity and

ability to avoid infection are modified if they survive successive attacks by viruses. Vi-

ruses that survive the effect of the anti-viral agent may find that their ability to survive

a future encounter with molecules of the anti-viral agent is modified, as is their ability to

infect a healthy cell. Additionally, we assume that the anti-viral agents can be a cocktail

with different proportions of agents that target different strains of the virus. In this pa-

per, we give the state equations for the model and derive its analytical solution in steady

state. The solution then provides insight into the appropriate mix or ‘‘cocktail’’ of anti-vi-

ral agents that can be designed to deal with the virus’ ability to mutate. In particular, the

analysis shows that the concentration of anti-viral agent by itself does not suffice to ul-

timately control the infection, and that it is important to dose a mix of anti-viral agents

so as to target each strain of virus in a specific manner, taking into account the ability of

each virus strain to survive in the presence of the anti-viral agents. Models of this kind

may eventually lead to the computer aided design of therapeutic protocols or drug

design.

ª 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models of populations have long been of inter-

est in biology (May and Hassell, 1988). They have been applied

successfully to the study of infectious diseases (Bonhoeffer

et al., 1997), and have even been popularised in a recent novel

(Haddon, 2004). In computer science and electrical engineer-

ing, stochastic models of ‘‘populations’’ of telephone calls,

computer network packets and computer systems (Kelly,

1978; Gelenbe and Mitrani, 1980) have received considerable

attention, while the study of natural and artificial neural net-

works has also provided a fruitful connection between models

of interest to biology and their counterparts in engineering

(Rumelhart et al., 1986; Gelenbe, 1993). Similarities between

performance models for parallel computation (Gelenbe,

1989) and mathematical models of food chains (Cohen et al.,

1990) in biology have also been pointed out.1 Furthermore,

population models (Galton and Watson, 1874), as well as the

study of telephone calls (Kolmogorov, 1931) which gave rise

to queueing theory (Asmussen, 1987; Gelenbe and Fourneau,

2002), have had significant impact on the development of

the mathematics of random processes (Medhi, 1994).

In this paper, we consider a stochastic population model

which is inspired by both engineering and biological consider-

ations. The biological context we have in mind corresponds to

an environment containing a concentration of viruses of

healthy and infected agents, and of an active anti-viral agent.

The engineering context we consider comes from computer
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software, where ‘‘intelligent agents’’ interact in accomplishing

different tasks. In particular, there are harmful software agents

such as computer viruses and worms. They infect and degrade

the software of bona fide users, and can be eliminated by a spe-

cific anti-virus agent designed to block or destroy software

viruses. In the terminology used throughout this paper, we

will only refer to the biological paradigm, so as to avoid going

back and forth between these motivating examples.

The biological agents we consider are replenished

through external migration or agent division, by the produc-

tion of viruses by infected agents, by the transformation of

normal agents into infected agents through their encounter

with viruses, and by mutation. Viruses may be rendered in-

active by their encounter with molecules of the anti-viral

agents. However, a virus may survive the encounter with

the anti-viral agent and mutate into a hardier or different

strain. All of these entities can also be naturally eliminated

from this environment, for instance by the death of healthy

and infected agents, by the diffusion of all these entities

out of the medium being considered, and through the com-

bination of these different entities as a result of their

interaction.

Thus healthy agents too may belong to different types or

strains which affect their level of resistance to infection and

their longevity. Viruses also can belong to different strains

in order to represent their degree of virulence and their

ability to resist to the anti-viral agent. Our model can also

represent types of agents whose resistance is modified by

successive encounters with viruses, either because they

become more resistant, or less resistant. The variation of

an agent’s resistance to encounters with viruses can also

be a non-monotone function of the number of encounters,

e.g. an increasing resistance, followed at some point by

a decreasing resistance as the number of encounters

increases.

A virus’ encounter with an agent may or may not be ‘‘suc-

cessful’’ from the virus’ perspective by resulting, or not result-

ing, in the agent’s infection. After the encounter we assume

that the virus is either incorporated into the infected agent,

or that it is eliminated by the agent if the agent does not

become infected. In either case, the virus involved in the

encounter disappears as an entity (i.e. is destroyed by the

agent or is incorporated into it), and either the original agent

remains healthy, or in case of infection the original agent

becomes an infected agent.

The main result of this paper is to show that under ap-

propriate assumptions, a stochastic model of the size of

such a biological mix of populations can lead to a steady-

state solution which has a particularly simple product

form, in which the joint probability distribution of the

size of each sub-population is expressed as the product of

the marginal distribution of each population. These

marginal probabilities are themselves computed from the

solution of a set of non-liner equations. We then show

how this result can apply to a special case, so as to provide

insight in the manner in which the anti-viral agent should

be composed of a ‘‘cocktail’’ each of whose elements must

be targeted in a specific manner to each strain of the mu-

tating virus so as to keep the viral population under

control.

2. The mathematical model

We model the numbers of each of the four entities, namely the

numbers of viruses and agents, and the number of molecules

of anti-viral agents at some time t� 0, or their concentrations,

with the following variables:

– The number of healthy agents of type or strain i is repre-

sented by a natural number Ci(t)� 0, where i¼ 0, 1, 2, ..

The strain of the agent can impact the degree to which it

becomes infected, and its survivability or longevity.

– The number of infected agents (or their concentration) is

also represented by a natural number i(t)� 0. In this paper,

we do not distinguish between the strains of infected

agents.

– a(t)� 0 is the quantity or concentration of the anti-viral

agent, and is also a natural number.

– Finally, Vj(t)� 0 is a natural number representing the num-

ber of viruses in the system that belongs to strain j� 0.

Healthy agents of type 0 are those which have never en-

countered a virus, while viruses of strain 0 are those which

have never come into contact with the anti-viral agent.

All the entities we consider enter the system at some spe-

cific rate, and diffuse through the system at specific rates. This

corresponds, for instance, to the behaviour of entities which

are suspended in a liquid.

Healthy agents of type i are added to the system (for in-

stance via arrival into the system, or via agent division) at

some rate li; they diffuse through the system at rate mi and

are eliminated from the system (e.g. as a consequence of agent

death or some other form of elimination) at rate dimi where di

can be interpreted as a probability. Infected agents result

only from the infection of healthy agents, i.e. we do not as-

sume that infected agents enter the system from some out-

side source. The infected agents diffuse at rate m, they die at

rate dm, where d is a probability, and at rate (1� d )m they leave

the system before they die.

Viruses belonging to strain j enter the system at some rate

bj and diffuse at rate gj. They are eliminated naturally at rate

bjgj where 0� bj� 1 is a probability. Thus different virus

strains may be more or less ‘‘durable’’, just as certain types

of agents may survive longer than others.

When an infected agent dies, we assume that it generates

an additional virus of strain j¼ 0. Infected agents could

potentially generate a large number of viruses; however

the mathematical model is restricted to this simpler case for

the time being. Furthermore, the reduced virulence of infected

agents could also be attributed to the presence of the anti-viral

agent. Also we could imagine that the genetic strain of the vi-

ruses generated by an infected agent should somehow mimic

the strain of the viruses that infected it. Thus in both of these

respects, as in other aspects, our model is a mathematical

simplification of a much more complex reality.

An anti-viral agent’s units (e.g. molecules) enter the me-

dium at rate a, and diffuse in the medium at rate d. During dif-

fusion, they are removed from the medium with probability

0� f� 1. With probability (1� f ) a unit of the anti-viral agent

will bind with some virus. With probability wj an anti-viral
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agent molecule attaches itself to a virus of strain j so thatPN
j¼0 wjð1� fÞ. If, on the other hand, there are no viruses of that

strain available, the unit or molecule of the anti-viral agent

will be wasted.2 Once the anti-viral agent binds with

its selected virus of type j, it will destroy it with probability

rj, or the virus will survive with probability (1� rj). If the virus

survives, it is now viewed as being a virus of strain jþ 1.

Note that the diffusion rates express activity rates of the

corresponding entities via their mobility or their natural abil-

ity to engage other entities. The rates will depend on the me-

dium in the system (e.g. water, blood plasma), the size and

mass of the agents, the obstacles they may encounter, their

electrical properties or those of the medium or environment,

and so on. In mathematical terms, these rates are the param-

eters of independent and identically distributed exponential

random variables. Also, we model the external arrival pro-

cesses of viruses, anti-viral agents and agents as mutually

independent Poisson processes.

2.1. The encounter of agents and viruses

Infection of healthy agents occurs as a result of the encounter

of healthy agents and viruses. As indicated earlier, once an

agent is infected, it will die at some rate md and as a result

will produce a virus. We model the infection process as

follows.

Viruses belonging to strain j, when they are not naturally

eliminated from the system, will diffuse at rate gj, and will

be eliminated from the system at rate gjbj. Viruses of strain j

will target agents of strain i with probability zji wherePN
i¼0 ¼ zjið1� bjÞ. Thus the probability zji expresses the

preference of the virus of strain j for an agent of type or

strain i.

Similarly, a normal agent of type i will diffuse through the

system at rate mi and be eliminated from the system before it

encounters a virus with probability di. As it diffuses in the sys-

tem, the agent will have preferentially bound with viruses of

type j with probability yij,
PN

j¼0 ¼ yijð1� diÞ.
The healthy agent of type i that is involved in either of

these encounters with a virus of type i will become infected

with probability pji, or with probability (1� pji) it remains unin-

fected. If it does not become infected, it will now have become

an agent of type iþ 1. This model can represent either a muta-

tion of the agent into a more resistant (or simply different)

strain as a result of the encounter with the virus, or it may rep-

resent the fact that the agent’s strain is being revealed by the

encounter with the virus.

The model can also represent situations where an agent’s

resistance changes in a non-monotone fashion (e.g. it be-

comes ‘‘stronger’’ and then ‘‘weaker’’) as a result of successive

encounters with viruses. In other words pji may decrease as i

increases, or it may increase with i, or it may remain un-

changed, and there may be a decrease followed by an increase

and so on.

2.2. Analogy with a network of queues

Queueing models (Kelly, 1978; Asmussen, 1987) are com-

monly used to represent traffic in computer and communica-

tion networks or to describe the workload in computer

systems (Onvural, 1995; Gelenbe and Pujolle, 1998), and to

analyse the performance of manufacturing systems or traffic

on roads. Thus a significant body of literature on queueing

networks exists and many relevant analytical techniques

have been developed for their solution. It is therefore useful

to consider the natural analogy that arises between the

model we describe in this paper and a queueing network in

which ‘‘customers’’ correspond to healthy or infected agents,

viruses or molecules of anti-viral agent, and the queue length

associated with any one of these entities is the instantaneous

number of entities of each kind which are present in the

system.

A significant difference is that queueing theory typically

models customers which visit some service centre, then

wait in line, receive service and then may move to some

other service centre. In our case, customers combine with

each other (for instance when a virus combines with

a healthy agent to create an infected agent), or are allowed

to destroy each other (as when a molecule of the anti-viral

agent de-activates a virus). In this respect, the model consid-

ered in this paper is similar to a class of models we had in-

troduced earlier (Gelenbe, 1993; Gelenbe and Fourneau, 2002)

which include ‘‘negative customers’’ and ‘‘triggers’’ which

allow certain customers to destroy others and also to force

them to move to different service centres, but with yet an-

other significant difference. Due to the need to represent a

countably very large number of genetic differences between

viruses and among agents, and because viruses and agents

may mutate naturally or in response to external stimuli, the

model introduced in this paper deals with countably infinite

and interdependent birth-and-death processes, rather than

a finite set of queues and service centres as is usual in queue-

ing theory.

Thus the continuous time Markov chains we consider are

defined over infinitely many states arising from the un-

bounded number of strains or types of agents and of viruses,

the unbounded number of agents and viruses of each strain,

the unbounded number of infected agents, and the un-

bounded quantity of anti-viral agent.

3. State equations of the model

The system can be described at time t� 0 by an infinite ran-

dom vector:

XðtÞ ¼
�
IðtÞ;aðtÞ;C0ðtÞ;.;CiðtÞ;.;V0ðtÞ;.;VjðtÞ;.

�
(1)

which represents the number of infected agents, the concen-

tration of anti-viral agent, the number of healthy agents of

each type, and the number of viruses of each strain. The total

number of agents and viruses are given by

CðtÞ ¼
XN

i¼0

CiðtÞ (2)

2 The model that has been formulated could potentially allow the
design of an ‘‘optimal cocktail’’ of anti-viral agents, by choosing
the best probability distribution wj which in some sense minimises
the infection and helps to increase the survival rate of agents.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 ( 2 0 0 7 ) 2 4 2 – 2 5 0244



VðtÞ ¼
XN

j¼0

VjðtÞ

For notational convenience we denote by ci the infinite

vector that is zero everywhere except that it is þ1 in the po-

sition corresponding to Ci(t), while vj is the infinite vector

which is zero everywhere except for the value þ1 in the po-

sition Vj(t). Similarly, let eI be the infinite vector which is

zero everywhere except that it has a þ1 in its first position

and eA be the infinite vector that is zero everywhere except

for its second position that is þ1.

Let x¼ [i, a, C0, ., Ci, ., V0, ., Vj, .] be the deterministic

vector which represents some specific value taken by X(t).

The quantity we will examine is the probability distribution

p(x, t)¼ Prob[X(t)¼ xjX(0)¼ x0] for some appropriate initial

condition x0.

From the system description provided in the previous

section, we can write state transition equations over the

very small time interval [t, tþDt] for p(x, t) as follows:

where the explanation of the terms on the right-hand side is

given line by line as follows:

– Line 1: the first term o(Dt) covers all second order terms

obtained by two or more simultaneous events, while the

second term corresponds to external arrivals of anti-viral

agent molecules into the medium, and the third term

represents external arrivals of agents of type i into the

medium.

– Line 2: The first term represents the probability of external

arrivals of viruses of each strain, while the second and third

terms represent the probabilities of natural elimination

from the medium of molecules of the anti-viral agent and

of healthy agents of each type, respectively.

– Line 3: The first term concerns the probability of natural

elimination from the system of viruses of each strain,

the second term describes the event related to the death

of an infected agent and the resulting release of a virus,

while the third term covers the case where an

infected agent is eliminated from the environment we

consider.

– Line 4: Both terms cover the encounter of a healthy agent of

type i with a virus of strain j when this does not result in the

infection of the agent; as a consequence the agent’s type be-

comes iþ 1 and the virus is eliminated. Line 5 deals with the

case where there are no agents of the specific strain that are

targeted by the virus, or there are no viruses of the strain the

agent can bind with.

– Line 6: In this case, an agent of type i encounters a virus of

type j and infection does occur and the virus is incorporated

into the infected agent.

– Line 7: A unit of the anti-viral agent encounters a virus

of strain j¼ 0, 1, ., and either the virus is destroyed, or

the virus survives and mutates into a virus of one higher

strain.

– Line 8: This covers the case where it so happens

that a molecule of the anti-viral agent which

diffuses through the system is targeting viruses of

strain j, but at that instant there are no viruses of that

strain in the system. Of course, we sum over all strains

of viruses (over all j ) so that all such possible cases are

covered.

– The last two lines cover the probability that none of these

events occurs.

By subtracting terms and dividing both sides by Dt we

obtain:
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Now taking the limit as Dt/0, and then using the

fact that limDt/0oðDtÞ=Dt ¼ 0, we obtain the Chapman–

Kolmogorov or backwards equation (6) for the system under

consideration:

If the stationary solution p(x) given by pðxÞ ¼ limt/þNpðx; tÞ
exists, then it is known (6) that it must satisfy the backwards

equation (8) with ðd=dtÞpðx; tÞ ¼ 0. In the sequel we will

concern ourselves with the computation of the stationary

solution which gives the general equilibrium between the

different populations we are considering.

4. Stationary solution

From the infinite system of differential-difference equations

given above, it is difficult to deduce the dynamics of the

system. However, the stationary solution of these equations

provides significant insight into the equilibria which are

established between different entities. Let us define the fol-

lowing quantities:

L�j;i ¼ qjgjzji; i; j � 0 (13)
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Li ¼
XN

j¼0

L�j;i; i � 0 (14)

l�i;j ¼ rimiyij; i; j � 0 (15)

l�A;j ¼ qAdwj; j � 0 (16)

Lþi ¼ li þ
XN

j¼0

h
L�j;i�1ri�1 þ l�i�1;jqj

i�
1� pj;i�1

�
; i � 1 (17)

F�j ¼ l�A;j þ
XN

i¼0

l�i;j; j � 0 (18)

Fþj ¼ bj þ l�A;j�1qj�1

�
1� rj�1

�
; j � 1 (19)

The expressions (14)–(19) can be interpreted as follows:

– The total rate at which viruses which diffuse in the system

interact with healthy agents of type i, either resulting in

an infected agent or in a healthy agent of type iþ 1, in effect

reducing each time the number of healthy agents by 1.

– The total rate at which healthy agents of type i join the

system either from external sources or by mutation of an

agent of type i� 1 which survives an encounter with a virus.

– The total rate at which viruses of type j are removed either

because they are destroyed by the anti-viral agent or be-

cause a healthy agent that is diffusing through the system

encounters the virus, becomes infected and incorporates

the virus, or does not become infected and eliminates the

virus.

– Finally, the total rate at which viruses of type j� 1 are

replenished, either through external arrivals or by mutation

after an encounter with the anti-viral agent does not result

in the destruction of a virus of strain j� 1.

Now let

qA ¼
a

d
(20)

r0 ¼
l0

m0 þ L0
(21)

ri ¼
Lþi

mi þ Li
; i � 1 (22)

q0 ¼
b0 þ qImd
g0 þ F�0

qj ¼
Fþj

gj þ F�j
; j � 1 (23)

qI ¼
PN

i;j¼0

h
L�j;iri þ l�i;jqj

i
pji

m
(24)

Because we are dealing with an infinite vector x, in order to

avoid having zero values of the probability associated with

each infinite vector, we will express the results in terms of the

marginal probabilities over any finite sub-vector xn,m¼ [i, a, C0,

., Cn, V0, ., Vm] where we only consider the first n strains of

cells, and m strains of viruses. Of course, n, m can be chosen

arbitrarily so the result maintains its full generality. We then

have:

pðxn;m; tÞ ¼
XN

i¼nþ1

XN

j¼mþ1

pðx; tÞ (25)

and p(xn,m)¼ limt/þNp(xn,m,t)

Theorem. The stationary solution to the system of equations (8) for

any n, m� 0 is given by

pðxn;mÞ ¼ Gn;mqa
Aqi

I

hYn

i¼0

ðriÞ
Ci

ihYm

j¼0

�
qj

�Vj
i

(26)

provided that 0� qA, qI, ri, qj< 1, for all i, j¼ 0, ., N, where Gn;m ¼
ð1� qAÞð1� qIÞ

Qn
i¼0 ð1� riÞ

Qm
j¼0 ð1� qjÞ is a normalising constant.

The proof of the theorem is provided in Appendix 1.

Furthermore, it is easy to see that in steady state, the aver-

age number:

– of infected agents is given by qI[1� qI]
�1, if qI< 1,

– of healthy agents of strain i is given by ri[1� ri]
�1, if ri< 1,

– and of viruses of strain j is given by qj[1� qj]
�1, if qj< 1.

5. A simple consequence and a heuristic rule

The purpose of using the anti-viral agent is to avoid the explo-

sive growth of the number of infected agents and viruses.

Thus we are interested in finding how we can most effectively

use the anti-viral agent to keep these numbers under control,

or to drive them to zero.

The ith strain of healthy agents is those which remains

healthy after i encounters with a virus. Thus we can take

li¼ 0 for i� 1 so that all new or untested agents are considered

to be of strain 0. Similarly, we assume that a virus’ strain is

only revealed by its successive survivals to encounters with

the anti-viral agent, so that bj¼ 0 for j� 1. With these assump-

tions the expressions (21)–(24) yield:

qI ¼
PN

i;j¼0 riqj

h
gjzji þ miyij

i
pji

m
(27)

so that for j� 1,

qj ¼
l�A;j�1qj�1

�
1� rj�1

�

gj þ qAdwj þ
PN

i¼0 rimiyij
(28)

¼ q0PðjÞ (29)

PðjÞ ¼ aj
Yj

l¼1

wl�1ð1� rl�1Þ
gl þ awl þ

PN
i¼0 rimiyil

(30)

while for i� 1,

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 2 ( 2 0 0 7 ) 2 4 2 – 2 5 0 247



ri ¼ ri�1

PN
j¼0 qj

h
gjzj;i�1 þ miyi�1;j

i�
1� pj;i�1

�

mi þ
PN

j¼0 qjgjzji
(31)

¼ r0

Yi

l¼1

PN
j¼0 qj

h
gjzj;l�1 þ miyl�1;j

i�
1� pj;l�1

�

ml þ
PN

j¼0 qjgjzjl
(32)

and

q0 ¼
b0 þ

PN
i;j¼0 riqj

h
gjzji þ miyij

i
pji

g0 þ aw0 þ
PN

i¼0 rimyi0
(33)

¼ b0

g0 þ aw0 þ
PN

i¼0 rimiyi0 � q0

PN
i;j¼0 riPðjÞ

h
gjzji þ miyij

i
pji

(34)

r0 ¼
l0

m0 þ
PN

j¼0 qjgzj0
(35)

Let us now see how (30) can provide us with insight about the

use of the anti-viral agent. Let us express a heuristic rule, and

then show how it is justifiedusingthe results we havepresented.

A heuristic rule: First of all, notice from (34) that if we

can choose aw0 to be arbitrarily large, then we can set q0 to

a value less than 1, and in fact set it to as small a value as we

wish. Obviously, there will be natural limits to this since at

some level of concentration, the anti-viral agent will impair

the normal behaviour of uninfected agents. Once a small

enough value of q0 has been achieved using a large enough value

of aw0, we turn to (30) and see intuitively that we must also in-

sure thatP( j ) doesnot growas j increases. Anobviouswayof do-

ing this is to set wj>wj�1(1� rj�1), in other words the fraction of

anti-viral agent which is devoted to controlling the jth

viral strain should be larger than the fraction allotted to the

j� 1th strain multiplied by the probability that viruses of the

j� 1th strain survive an encounter with the anti-viral agent.

Let us now put this recommendation on a more rigorous

mathematical footing. Assume first that have been able to

achieve q0< 1. Then if all the P( j )< 1 we are sure that the

qj< 1 for j� 1. However, this does not suffice to guarantee

that the size of the virus population is under control, i.e.

that in steady state the average size of the virus population

remains finite:

V ¼
XN

j¼0

qj

1� qj
< þN (36)

However, we can show that if q0< 1 and wj�wj�1(1� rj�1) so

that all qj< 1, then V<þN provided that

lim
j/þN

wj

�
1� rj

�
wjþ1

¼ 0 (37)

Indeed, if qj< 1 for j� 0, then

V ¼
XN

j¼0

qj

1� qj
�
XN

j¼0

h
qj þ q3

j

i
(38)

Since each 0� qj< 1, it follows that
PN

j¼0 q3
j < þN wheneverPN

j¼0 qj < þN, and the latter series converges if lim j/þNqj=

qj�1 ¼ 0, hence the claim.

Since the expressions obtained in the steady-state solution

are non-linear, in general we should determine the existence

and uniqueness of solutions to the equations we are dealing

with. However, as a result of the parameter values being

selected, we have qj< 1 for all j� 0, we are assured in this

case of existence and uniqueness of the steady-state solution.

6. Conclusions

In this work, we suggest a probability model for populations of

agents and viruses that interact in the presence of an anti-viral

agent. Both agents and viruses can belong to different strains,

and these strains are revealed as the agents, viruses and the

anti-viral agent interact. Viruses that survive the effect of the

anti-viral agent are considered to belong to a different strain

from the one they started in, and their ability to survive a future

encounter with molecules of the anti-viral agent is modified, as

is their ability to infect a healthy agent. Similarly, agents which

remain healthy after an encounterwith a virus will now beiden-

tified as belonging to a new strain or type, and this will impact

their future behaviour. Additionally, we assume that the anti-

viral agent can be made up of a mix or cocktail, with different

proportions of agents that target different strains of the virus.

We derive the state equations for the dynamics of the

model in terms of the probability distribution of each

possible state as a function of time, and show that in steady

state these equations have a compact analytical solution.

This solution is used to provide insight into the appropriate

mix or ‘‘cocktail’’ of anti-viral agent that is needed to keep

the infection under control. One insight that the model pro-

vides is that the concentration of anti-viral agent by itself

does not suffice to ultimately control the infection, and that

it is important to distribute the effectiveness of the anti-viral

agent over all strains of the virus in a specific manner, taking

into account both the overall dosage mechanism and the abil-

ity of each virus strain to survive. We hope that such results

may eventually help to develop improved therapeutic proto-

cols based on computer aided design methods.

This model can benefit from many extensions that would al-

low a better understanding of the interaction of agents and vi-

ruses, or of agents and other infectious agents, in the

presence of naturally produced or synthetically introduced

chemical agents. We could, for instance, consider a mutation

mechanism for agents and viruses which is independent of

the interaction between all these elements. We could also study

the noxious effects of theanti-viral agent on the healthy agents.

It would also be very useful to model protocols which include

anti-viral treatment together with techniques that improve

the immunity of healthy agents, and also to model techniques

that render infected agents incapable of producing viral mate-

rial. We conclude that this paper can stimulate research about

some of these issues. Another direction of useful research

would be to use the analytical results we have obtained to de-

velop algorithms for the optimisation of therapeutic strategies.
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Appendix 1.

The proof of Theorem 1 is by direct substitution of (26) into Eq. (8)

when we set dpðx; tÞ=dt ¼ 0 and replace p(x, t) by p(x). Carrying

out this substitution, moving the last term in (8) to the left-

hand-side, and dividing both sides of the system of equations

by the value of p(x) given in (26) we get

aþ d1½a > 0� þ m1½i > 0� þ
XN

i¼0

½li þ mi1½Ci > 0��

þ
XN

j¼0

h
bj þ gj1

�
Vj > 0

�i
¼ a1½a > 0�

qA
þ
XN

i¼0

li1½Ci > 0�
ri

þ
XN

j¼0

bj1
�
Vj > 0

�
qj

þ qAdf þ
XN

i¼0

ridimi þ
XN

j¼0

qjbjgj þ
qIdm1½v0 > 0�

Q0

þ qIð1� dÞmþ
XN

i;j¼0

riqj

riþ1

h
gjzji þ miyij

i
1½Ciþ1 > 0�

�
1� pji

�

þ
XN

i;j¼0

riqj

qI

h
gjzji þ miyij

i
pji1½i > 0� þ

XN

j¼0

qAqjdwjrj

þ
XN

j¼0

qAqj

qjþ1
dwj

�
1� rj

�
1
�
Vjþ1 > 0

�
þ
XN

i;j¼0

h
qjgjzji1½Ci ¼ 0�

þ rimiyij1
�
Vj ¼ 0

�i
þ
XN

j¼0

qAdwj1
�
Vj ¼ 0

�
ð39Þ

which, after simplification, yields

aþ
XN

i¼0

½li þ mi1½Ci > 0�� þ
XN

j¼0

h
bj þ gj1

�
Vj > 0

�i

¼
XN

i¼0

li1½Ci > 0�
ri

þ
XN

j¼0

bj1
�
Vj > 0

�

qj
þ qAdf þ

XN

i¼0

ridimi

þ
XN

j¼0

qjbjgj þ
qIdm1½V0 > 0�

q0
þ qIð1� dÞm

þ
XN

i¼0

Lþiþ1 � liþ1

riþ1

1½Ciþ1 > 0� þ
XN

j¼0

qAqjdwjrj

þ
XN

j¼0

Fþjþ1 � bjþ1

qjþ1
1
�
Vjþ1 > 0

�
þ
XN

i¼0

Li1½Ci ¼ 0� þ
XN

i¼0

F�j 1
�
Vj ¼ 0

�

¼ ½m0 þ L0�1½C0 > 0� þ
�
g0 þ F�0

�
1½V0 > 0� þ qAdf þ

XN

i¼0

ridimi

þ
XN

j¼0

qjbjgj þ qIð1� dÞmþ
XN

i¼1

Li1½Ci > 0� þ
XN

j¼0

qAqjdwjrj

þ
XN

j¼1

F�j 1
�
Vj > 0

�
þ
XN

i¼0

Li1½Ci ¼ 0� þ
XN

j¼0

F�j 1
�
Vj ¼ 0

�
ð40Þ

or

aþ
XN

i¼0

li þ
XN

j¼0

bj ¼ qAdf þ
XN

i¼0

ridimi þ
XN

j¼0

qjbjgj þ qIð1� dÞm

þ
XN

j¼0

qAqjdwjrj þ
XN

j¼0

F�j þ
XN

i¼0

Li ð41Þ

Now note that

rimidi ¼ rimi �
PN
j¼0

rimiyij

¼ l0 � L0r0 �
PN
j¼0

r0m0y0j; for i ¼ 0

¼ Lþi � Liri �
PN
j¼0

rimiyij; for i � 1

(42)

and

qjgjbj ¼ qjgj �
PN
i¼0

qjgjzji

¼ b0 � qImd�
PN
i¼0

q0g0z0i; for j ¼ 0

¼ Fþj � F�j qj �
PN
i¼0

qjgzji; for j > 0

(43)

so that

XN

i¼0

rimidi þ
XN

j¼0

qjgjbj ¼
XN

i¼1

�
Lþi � Liri

�
þ l0 � L0r0

þ
XN

j¼1

�
Fþj � F�j qj

�
þ b0 þ qImd� F�0 q0

�
XN

i;j¼0

rimiyij �
XN

i;j¼0

qjgjzji ð44Þ

Thus (41) reduces to

aþ
XN

i¼0

li þ
XN

j¼0

bj ¼ qAd�
XN
l¼0

qAdwj þ
XN

i¼1

�
Lþi � Liri

�

þ l0 � L0r0 þ
XN

j¼1

�
Fþj � F�j qi

�
þ b0 þ qImd� F�0 q0

þ qIð1� dÞmþ
XN

j¼0

qAqjdwjrj þ
XN

j¼0

F�j þ
XN

i¼0

Li

�
XN

i;j¼0

h
rimiyij þ qjgjzji

i
ð45Þ

or

0 ¼ qIm�
XN

j¼0

qAdwj þ
XN

i;j¼0

h
L�j;iri þ l�i;jqj

i�
1� pj;i

�
�
XN

i¼0

Liri

�
XN

i;j¼0

h
rimiyij þ qjgjzji

i
þ
XN

j¼0

l�A;jqj

�
1� rj

�
�
XN

j¼0

F�j qj

þ
XN

j¼0

qA;qjdwjrj þ
XN

j¼0

F�j þ
XN

i¼0

Li

¼ �
XN

j¼0

qAdwj þ
XN

i;j¼0

h
L�j;iri þ l�i;jqj

i
�
XN

i¼0

Liri þ
XN

j¼0

l�A;jqj

�
XN

i;j¼0

h
rimiyij þ qjgjzji

i
�
XN

j¼0

F�j qj þ
XN

j¼0

F�j þ
XN

i¼0

Li

¼ �
XN

j¼0

qAdwj þ
XN

i;j¼0

h
L�j;iri þ l�i;jqj

i
�
XN

i¼0

Liri þ
XN

j¼0

l�A;jqj

�
XN

i;j¼0

h
rimiyij þ qjgjzji

i
�
XN

j¼0

lA;jqj �
XN

i;j¼0

l�i;jqj þ
XN

j¼0

l�A;j

þ
XN

i;j¼0

l�i;j þ
XN

i;j¼0

qjgjzji ð46Þ

and we see that all terms on the right-hand-side cancel out,

completing the proof of Theorem 1. ,
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