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Abstract. In this paper, a novel supervised batch learning algorithm for
the Random Neural Network (RNN) is proposed. The RNN equations
associated with training are purposively approximated to obtain a linear
Nonnegative Least Squares (NNLS) problem that is strictly convex and
can be solved to optimality. Following a review of selected algorithms,
a simple and efficient approach is employed after being identified to be
able to deal with large scale NNLS problems. The proposed algorithm
is applied to a combinatorial optimization problem emerging in disaster
management, and is shown to have better performance than the standard
gradient descent algorithm for the RNN.

1 Introduction

One of the most prominent features of neural networks is their ability to learn
from examples. Supervised learning has been extensively employed in a plethora
of neural networks models, including the random neural network (RNN), which
is of interest in this paper. RNN is a recurrent neural network inspired by the
pulsed behaviour of natural neuronal networks [1, 2]. In contrast to other re-
current neural models, its steady state can be described by a product form
probability distribution of the neuron states, whereas its signal flow equations
are analytically solvable. Moreover, as is the case for conventional artificial neu-
ral networks, RNN is able to approximate continuous and bounded functions [3,
4]. A gradient descent supervised learning algorithm for RNN that sequentially
updates the weights of the network for each pattern was introduced in [5]. The
algorithm has been successfully applied in many problems including image pro-
cessing [6], magnetic resonance imaging [7] and wafer surface reconstruction [8];
a survey of applications can be found in [6].

Apart from its usefulness as a neural network, RNN can be used as a mod-
elling tool to capture the behaviour of interactive agents in several contexts. The
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RNN has a direct analogy to queueing networks and extends them by introducing
the notion of “negative” customers for work removal. This notion has inspired
a great amount of scientific work resulting in numerous extensions of queueing
networks called G-networks [9]. Recently, a variation of RNN was employed to
model both the interactions taking place in gene regulatory networks [10] and
the synchronized firing effects in neuronal networks [11, 12].

Therefore, introducing efficient learning algorithms for the RNN is important
not only for applications where the RNN is used as a neural network tool but
also in cases where a combination of modelling and learning is required. In this
paper, a new batch learning algorithm for the RNN based on an approximation of
the network’s steady-state equations, is proposed. The obtained system is linear
with nonnegativity constraints and can be solved using linear Nonnegative Least
Squares (NNLS) techniques.

Linear least squares techniques have been utilized in feedforward connec-
tionist neural networks [13, 14]. The learning process becomes linear by either
neglecting the scaling effect or approximating the nonlinear activation function.
Least squares solution is only applied to single layers of neurons and not the
whole network. On the contrary, the proposed approach is developed for a re-
current network with least squares applied to the whole network.

The remaining of the paper is structured as follows: In section 2, a concise
description of the RNN and its gradient descent learning algorithm is provided.
In section 3, supervised learning in RNN is formulated as a NNLS problem
which in turn is solved using the RNN-NNLS algorithm developed in section
4. Following, in section 5, is the comparison of its performance with that of
the standard gradient algorithm when applied to a combinatorial optimization
problem arising in disaster management. The conclusions are summarized in
section 6.

2 The Random Neural Network

The RNN model is comprised of N neurons that interact with each other sending
excitatory and inhibitory signals. Neuron i is excited if its potential ki(t) ∈ N
is positive and it is quiescent or idle if ki(t) = 0. The probability of neuron i
being excited is equal to qi. Neuron i receives excitatory or inhibitory spikes from
the outside world according to Poisson processes of rates Λi and λi. Excitatory
spikes increase the internal state of the receiving neuron by 1, whereas inhibitory
spikes reduce this by 1 if neuron i is excited. If a neuron i is active, it can fire
a spike at time t with an independent exponentially distributed firing rate ri. If
this happens then its potential ki(t) is reduced by 1. The resulting spike reaches
neuron j as an excitatory spike with probability p+(i, j) or as an inhibitory spike
with probability p−(i, j), or it departs from the network with probability d(i).
Because the probabilities associated with neuron i must sum up to 1 it is true
that:

∑N
j=1 [p+(i, j) + p−(i, j)] + d(i) = 1.



The signal-flow equations of the network are described by the following sys-
tem of nonlinear equations:

qi = min{1,
λ+(i)

ri + λ−(i)
}, 0 ≤ qi ≤ 1

λ+(i) = Λi +
N∑

j=1

rjqjp
+(j, i) (1)

λ−(i) = λi +
N∑

j=1

rjqjp
−(j, i)

The above system of nonlinear equations (1) always exists and it is unique [1, 2,
5], whereas the steady-state probability distribution of the neuron potentials is
in product form: π(k) =

∏N
i=1(1− qi)qki

i , if qi < 1.
Similar to connectionist models, RNN has weights, w+(i, j) and w−(i, j),

that are used for learning. These weights represent the firing rates of excitatory
and inhibitory signals from neuron i to neuron j respectively, and are given by
w+(i, j)=rip

+(i, j) ≥ 0 and w−(i, j) = rip
−(i, j) ≥ 0. From the definition of

the RNN weights, an expression for the firing rate ri is derived:

ri =
∑N

j=1
[w+(i, j) + w−(i, j)]/(1− d(i)) (2)

Supervised learning in RNN can be performed by mapping the positive and
negative values of the input patterns to the parameters Λk = [Λ1k, ... , ΛNk],
λk = [λ1k, ... , λNk] respectively, and the output patterns to the parameters
q

k
= [q1k, ... , qNk]. In order to update the RNN weights w±(u, v) according to

the gradient descent rule, is is required to find expressions for the derivatives
∂qi/∂w±(u, v). Although this is challenging task because the system of equations
(1) is nonlinear, as proven in [5], these terms can be expressed as a linear system
of equations with unknowns ∂q/∂w±(u, v) that can be efficiently solved.

The general steps of the RNN gradient descent supervised learning algorithm
are as follows [5]:

1. Initialize the weights of the network
2. For each input-output pattern do the following:

– Initialize appropriately the parameters Λk, λk and q
k

– Solve the system of nonlinear equations (1)
– Use the results obtained to calculate the terms ∂q/∂w±(u, v)
– Update the weights according to the gradient descent rule

3. Repeat the procedure in step 2 until convergence

3 NNLS Formulation of RNN Supervised Learning

The purpose of supervised learning is to find an optimal set of weights so that
for a set K of input patterns, the network’s output closely represents the desired



one. As already mentioned, the output of the k-th pattern is associated with the
parameters q

k
, which are derived from the system of equations (1). Assuming

that 0 ≤ λ+(i)/(ri + λ−(i)) ≤ 1, ∀i, k and that d(i) = 0, ∀i then combining (1)
with (2) for all patterns yields:

qik

N∑

j=1

w−(i, j) + qik

N∑

j=1

qjkw−(j, i)+

+qik

N∑

j=1

w+(i, j)−
N∑

j=1

qjkw+(j, i) = Λik − qikλik, ∀i, k (3)

and w+(i, j) ≥ 0, w−(i, j) ≥ 0 ∀ i, j

The above system is comprised of NK equations. If all qik are known then
the only unknowns are the 2N2 weights w+(i, j) and w−(i, j) and the resulting
system is linear with nonnegativity constraints. The assumption that all qik are
known is valid when there is a large number of output neurons which are set
to their desired output values; for the other neurons, qik can be set to random
values.

Because of the nonnegativity constraints and the fact that K 6= 2N a unique
solution to the system (4) may not exist. In fact, the system can be either over-
determined or under-determined depending on the value of K. The best that
can be done is to minimize the least squares error, which can be accomplished
by formulating the system of equations (4) as a linear NNLS problem:

min
w≥0

f(w) = min
w≥0

0.5‖Aw−b‖22, A ∈ RNK×2N2
, b ∈ RNK×1, w ∈ R2N2×1 (4)

where ‖ · ‖2 is the L2-norm. The gradient of f(w) is ∇f(w) = AT (Aw)−AT b.
If A is a full rank matrix, NNLS is a strictly convex quadratic optimization
problem.

Let row ik of matrix A be the one associated with equation ik of system (4)
and ij+ and ij− columns be the ones corresponding to the variables w+(i, j)
and w−(i, j) of w. Then, A(ik, ij+) = A(ik, ij−) = qik, A(ik, ji+) = −qjk and
A(ik, ji−) = qikqjk ∀j 6= i, while for j = i A(ik, ii−) = qik + q2

ik. The other
elements of row ik of A are equal to zero. In addition, the elements of b are given
by:

b(ik) = Λik − qikλik, ∀ i, k (5)

Notice that A is of high dimensionality (NK × 2N2 elements). However, it is
highly sparse since each of its 2N2 element rows, contain only 4N − 3 nonzero
elements. Moreover, the nonzero values of A can be easily calculated using the
qik values. Consequently, vector q ∈ RNK×1 can be stored instead of A and
used to calculate simple operations involving A such as matrix-vector products.
Consequently, the developed approach should not require the storage of A and
involve simple operations with A.



4 Nonnegative Least Squares Learning

The algorithms for the solution of NNLS problems can be divided into two broad
classes: active set algorithms and iterative approaches.

Active set algorithms [15, 16] rely on the fact that any variables that take
negative or zero values when the unconstrained least squares problem is solved,
do not contribute to the solution of the constrained problem. These constraints
form a set called active, while the set of constraints corresponding to positive
variables is called passive. All constraints are initially inserted into the active set.
Afterwards, an iterative procedure is followed to identify and remove variables
from the particular set. This involves the solution of the unconstrained problem
formed by the variables in the passive set. Consequently, active set methods
require matrix inversion operations and are not appropriate.

Iterative methods are based on standard techniques used in nonlinear op-
timization to update w such as gradient descent methods and interior point
methods. A popular approach for NNLS problems is to update the current solu-
tion with the use of projected gradient methods (6). These methods can identify
several active set constraints at a single iteration and do not require sophisti-
cated matrix operations. In the projected gradient methods, the update takes
place towards the steepest descent direction. However, by using the projection
operation (7), it is ensured that the new point is within the feasible region.

wτ+1 = P [wτ − sτDτ∇f(w)], sτ ≥ 0, Dτ ∈ R2N2×2N2
(6)

P [wi] =
{

wi, wi > 0
0, wi ≤ 0 (7)

Many different projected gradient methods have been developed which em-
ploy different techniques for selecting the step size sτ and the gradient scaling
matrix Dτ .

Lin proposed an algorithm based on first order projected gradient information
that makes no use of Dτ [17]. Lin introduced an efficient modification of the
“Armijo rule along the projection arc” (APA) [18] to update the value for the
step size sτ . In APA, sτ+1 is found by starting from a large value for sτ and
exponentially decreasing it until condition (8) is satisfied.

f(wτ+1)− f(wτ ) ≤ σ∇f(w)T (wτ+1 − wτ ) (8)

In Lin’s approach, sτ+1 is obtained by starting the search for the new step-size
from the previous optimal value and appropriately increasing or decreasing it
until condition (8) is satisfied (Algorithm 1).

This algorithm is not only simple and efficient but also it is appropriate for
the purposes of this paper since it requires only matrix-vector multiplications
involving A and there is no need to store the latter. Specifically, the calculations
involving A are Aw to find f(w) as well as z = Aw, AT z and AT b to get ∇f(w).

A weakness of the above approach is that it relies on first order gradient
information and has slow convergence.



Algorithm 1 Projected Gradient Algorithm for the NNLS problem
Set σ = 0.01, β = 0.1
Set s0 = 1 and w1 = 0
repeat

sτ ← sτ−1

if {(8) is satisfied} then
repeat

sτ ← sτ/β
Set wτ+1 ← P [wτ − sτ∇f(wτ )]

until {((8) is not satisfied) or (w(sτ/β) = w(sτ ))}
else

repeat
sτ ← sτβ
Set wτ+1 ← P [wτ − sτ∇f(wτ )]

until {(8) is satisfied}
end if
Set wτ+1 ← P [wτ − sτ∇f(wτ )]

until {Convergence}

A quasi-Newton method that uses the gradient scaling matrix Dτ achieving
fast convergence was proposed in [19]. This algorithm not only exploits the active
set constraints but it also utilizes an approximation of the Hessian matrix to
update Dτ . Nevertheless, as the algorithm progresses, Dτ becomes dense and
requires storage making the algorithm prohibitive for the problem examined in
this paper.

Taking everything into consideration, the projected gradient method pro-
posed in [17] has been employed. The slow convergence of the algorithm is not
a major issue because obtaining a solution close to optimum is sufficient if the
fact that the problem itself is an approximation is regarded.

The proposed RNN-NNLS learning algorithm for obtaining the weights of
RNN according to the input-output pairs is outlined in Algorithm 2. Two sig-
nificant issues related to the algorithm are highlighted. Firstly, the NNLS algo-
rithm is executed without matrix A as input; q is sufficient to perform all the
matrix-vector product operations associated with A. Hence, the order of mem-
ory required is the same as for the standard RNN learning algorithm. Secondly,
when solving the nonlinear system of equations (1) in the main for-loop of the
algorithm, only the non-output neurons are updated; the values of the output
neurons are kept constant to their desired values. The procedure is repeated for
a number of iterations and the best acquired solution is exploited.

5 Experimental Results

For the evaluation of the proposed NNLS learning algorithm, a problem emerging
in disaster management is considered. The problem deals with the allocation of
emergency units to locations of injured civilians which is a hard combinatorial



Algorithm 2 Supervised RNN-NNLS Batch Learning Algorithm
Based on the input patterns initialize Λik and λik ∀ i, k
Set 0 < qioutk < 1 ∀, k, iout, according to the desired output of neuron i of the
k-th pattern. Index iout denotes an output neuron
Initialize the remaining neurons 0 < qioutk < 1 ∀ i, k randomly and based on

qioutk, qioutk form q ∈ RNK×1

for a number of iterations do
Update b according to (5)
w ← ProjectedGradientNNLS(q, b)
for all k do

Update qioutk by solving the nonlinear system of equations (1)
end for

end for

optimization problem. Problems of this nature require fast and close to optimal
decisions. A heuristic method that could be employed to solve such problems is
to train a neural network off-line with instances of the optimization problem in
the same physical context as the disaster and then exploit the trained neural
network to solve any problem instances that arise during the emergency. The
developed algorithm is applied to such a problem for training and decision and
its performance is compared to that obtained when training is performed with
the standard gradient descent RNN learning algorithm [5].

In the emergency problem considered, a number of civilians Ij is injured
at incident j with a total of NL such simultaneous and spatially distributed
incidents. NU emergency units are positioned at different locations and need to
collect the injured. Unit i can collect ci > 0 injured and has response time to
incident j, Tij > 0. Under the assumption that one unit can be allocated to only
one incident and that the total capacity of the emergency units, ct =

∑
i(ci),

is sufficient to collect all the injured, the goal is to find an allocation matrix x
with elements xij which minimizes total response time f(x):

min f(x) =
NU∑

i=1

NL∑

j=1

Tijxij (9)

subject to the constraints:

NL∑
j=1

xij = 1 ∀ i,
NU∑
i=1

cixij ≥ Ij ∀ j, xij ∈ {0, 1}∀ i, j (10)

The binary variables xij represent whether emergency unit i is allocated to inci-
dent j. The first constraint designates that an emergency unit must be allocated
to exactly one incident, whilst the second indicates that the total capacity of the
units allocated to an incident must be at least equal to the number of civilians
injured there. The above problem is NP-hard.

Assuming that the locations and capacities of the emergency units as well
as the locations of the incidents are fixed the problem can be mapped to a



supervised learning context, where the inputs to the network are the parameters
Ij and the outputs correspond to the binary variables xij . To represent the
output variables two neurons are used, a “positive” and a “negative”. If xij = 1,
then the excitation level of the corresponding “positive” output neuron is high
(close to 1) and the excitation level of the “negative” output neuron is low
(close to 0). If xij = 0, then the reverse is true. Thus, the corresponding neural
network architecture is comprised of a fully recurrent neural network with NL

input neurons and 2NUNL output neurons.
Training was performed for values of NU ranging from 8 to 20 and NL =

{3, 5} using 250 optimally solved training optimization instances. For every set
of training instances, the parameters Tij ∈ (0, 1) and ci ∈ {1, 2, 3, 4} were fixed
to uniformly distributed random values, while for each of the training pattern
Ij ∈ N were also randomly generated from the uniform distribution in the range
[0.5 · ct/NL, 1.1 · ct/NL].

Testing was performed using a distinct generated set of 200 test cases, with
the same probability distributions for all parameters, so that the training and
testing sets were disjoint. To emphasize the fact that A cannot be stored notice
that for NU = 20 and NL = 5 a network of N = 205 neurons is produced and A
is a 51250× 84050 matrix.

The results produced by the two methods were evaluated based on:

1. The ratio fNN (x)/fopt(x) that shows how close to optimality the solutions
are (Fig.1)

2. The percentage of instances solved so that all of the injured were evacuated
(feasible solutions)(Fig. 2)

3. The percentage of injured civilians collected (Fig. 3)

All metrics were averaged over the testing instances.
As illustrated in Fig. 1 both algorithms approach the optimal solutions

equally well. Concerning the percentage of injured civilians collected and the
percentage of instances where all civilians are collected, Figures 2 and 3 imply
that for NU = 8 the gradient descent algorithm performs better than the RNN-
NNLS one. This may be the case because for small networks there are less local
minima and gradient descent can reach a good solution. However, for the rest of
the cases, the RNN-NNLS learning algorithm performs substantially better that
the gradient descent one. This shows that the developed algorithm can work
quite well for large-scale networks and that the approximation is more accurate
as the network grows.

6 Conclusions

A novel algorithm for learning in the RNN, the RNN-NNLS, has been pre-
sented. The algorithm is based on approximating the system of equations de-
scribing RNN by a linear system with nonnegative variables. For the solution
of the formulated NNLS problem an efficient and simple projected gradient al-
gorithm, shown to be able to solve the problem at hand without the storage of
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Fig. 1. Average of fNN (x)/fopt(x) for the solutions where the units are able to remove
all the injured civilians (i.e. the “feasible” ones)
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Fig. 2. Percentage of solutions in which all injured civilians are evacuated; these solu-
tions are called “feasible” in the graphs, for want of a better term
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Fig. 3. Percentage of injured civilians that are collected



any large matrices, is employed. RNN-NNLS algorithm appears to have better
performance than the gradient descent RNN algorithm when applied to a hard
combinatorial optimization problem associated with the allocation of emergency
units to locations of injured civilians.
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