Formal methods and verification: what have we achieved?

Pierre Wolper
The beginning

- **1967 – 1969**: Assertions, invariants, axiomatic semantics; emphasis on logic and proofs (*Floyd, Hoare*).
 - Small sequential programs.
 - Programs with simple specifications.
 - Proving programs is a worthy activity (Dijkstra).
 - Theorem provers as possible support.
A Turning Point

• **1975 – 1985**: Focus on concurrency, finite-state systems, decidability and the introduction of algorithmic methods.
 – Dynamic logic as a formalization of Hoare logic in the finite-state case (Pratt).
 – Temporal logic to specify ongoing behaviors (Pnueli).
 – Process algebras (Milner).
 – Synthesis from propositional temporal logic (Clarke-Emerson, Manna-Wolper).
 – Model-Checking (Clarke-Emerson, Sifakis-Queille).
The Algorithmic Explosion

• **1985 – 1995**: An explosion of methods to cope with the *state explosion problem*.
 – Automata theoretic methods (Vardi-Wolper)
 – Symbolic methods: coding sets of states by formulas (BDDs).
 – Partial-order methods: avoiding unnecessary states when modeling concurrency (Valmari, Godefroid-Wolper, Peled).
 – SAT based methods.
 – Abstraction, exploiting symmetry.
 – Verifying systems with sets of identical processes.
 – Proof assistants, expressive logics, process algebras.
The extension period

• **1995 – 2005:** Moving beyond finite-state systems and towards control systems.
 – Models of timed systems: timed automata.
 – Symbolic methods for infinite-state systems: arithmetic, queues, pushdown systems.
 – Hybrid systems: including continuous dynamics.
 – Probabilistic systems.
 – Using solvers for Satisfiability Modulo Theories (SMT).
Adapting to a Changing World

• **2005 – 2015:** What needs to be verified is changing fast.
 – Hardware is reaching very large sizes and is as intricate as earlier software systems.
 – Processors are multicore and handle shared memory differently (relaxed memory models).
 – Security is a crucial issue.
 – If the network fails everything stops.
 – Biological data and systems need to be analyzed.
 – Embedded systems are not what they use to be.
What have we achieved

• Academic respectability.
• Fairly large research community, dedicated conferences.
• Many Awards, including Turing Awards: Dijkstra, Floyd, Hoare, Milner, Pnueli, Clarke, Emerson, Sifakis.
• Activity in industrial research labs.
• Use in industry: hardware, hardware design tools, systems, embedded systems.
What have we achieved

• Significant body of theoretical knowledge, potentially usable in other areas.
• Interesting developments in data structures and algorithms.
• Impressive development of proof tools (interest much wider than verification).
• Effective bug finding tools applicable in a variety of areas:
 – Hardware design
 – Programs with data abstracted
 – Device drivers
What have we not achieved

• Eliminating bugs: no shortage of bugs in the foreseeable future.
• Writing specifications, which are bug free.
• Automating theorem proving in expressive logics.
• Exploring very large state-spaces and keeping up with the increase of system sizes:
 – The size of systems grows exponentially (Moore’s law),
 – The state space is exponential in the system size,
 – Keeping up with this double exponential is really hard!
The Future

• Ever better tools for analysing systems, even if the analysis is not exhaustive.
• Niche applications for which the cost is justified:
 – Space probes,
 – Network security, internet of things,
 – Other very critical applications
• Expanding use of verification developed techniques in other areas.
• Radically different approaches: mining big code repositories.
• Build systems that can tolerate faults in some of their parts.
• We can live with (some) bugs.
Can we live with bugs?

• We do manage to live with humans, which are
 – Erratic,
 – Unpredictable,
 – Subject to mood changes,
 – Make lots of mistakes (arithmetic, spelling, ...)
 – Prone to making major errors (world wars, economic crisis, failing countries, ...)

• What makes it possible is that
 – We have many mechanisms for correcting errors (individually or collectively), and that
 – We don’t all make the same mistakes. Diversity helps.