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Genetic Algorithms for Route Discovery

Erol Gelenbe, Fellow, IEEE, Peixiang Liu, and Jeremy Lainé

Abstract—Packet routing in networks requires knowledge about
available paths, which can be either acquired dynamically while
the traffic is being forwarded, or statically (in advance) based
on prior information of a network’s topology. This paper de-
scribes an experimental investigation of path discovery using
genetic algorithms (GAs). We start with the quality-of-service
(QoS)-driven routing protocol called “cognitive packet network”
(CPN), which uses smart packets (SPs) to dynamically select
routes in a distributed autonomic manner based on a user’s QoS
requirements. We extend it by introducing a GA at the source
routers, which modifies and filters the paths discovered by the
CPN. The GA can combine the paths that were previously dis-
covered to create new untested but valid source-to-destination
paths, which are then selected on the basis of their ‘“fitness.” We
present an implementation of this approach, where the GA runs
in background mode so as not to overload the ingress routers.
Measurements conducted on a network test bed indicate that when
the background-traffic load of the network is light to medium,
the GA can result in improved QoS. When the background-traffic
load is high, it appears that the use of the GA may be detri-
mental to the QoS experienced by users as compared to CPN
routing because the GA uses less timely state information in its
decision making.

Index Terms—Cognitive packet networks (CPNs), genetic
algorithm (GA), quality of service (QoS), routing.

I. INTRODUCTION

OUTES in networks are selected so that some criterion

of performance can be satisfied, in addition to the most
elementary need of conveying data from a specified source
to a specified destination. For instance, Internet uses prior
agreements between “autonomous systems” (AS) to carry each
other’s traffic based on economic considerations, while routing
within each AS is generally based on the selection of a “shortest
path” or the “smallest number of hops” from a source to a
destination [1]. Asynchronous transfer mode (ATM) [2], [3] and
multiprotocol label switching (MPLS) [1] networks establish
a fixed path for a given “call” so as to satisfy the quality-of-
service (QoS) requirements, such as delay or cell loss, within
the overall traffic-engineering constraints imposed by the col-
lection of calls that a network may be handling.

In earlier work [4], [5], we reported an autonomic distrib-
uted routing protocol called the “cognitive packet network”
(CPN) [6], which dynamically selects paths through a store-
and-forward packet network so as to route peer-to-peer user
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traffic based on QoS. CPN’s ability to satisfy different user QoS
metrics based on random neural networks (RNNs) and rein-
forcement learning (RL), distributed at each network node, was
discussed in [4]. Its extension to a wireless ad hoc environment
is covered in [7].

In this paper, we exploit an analogy between “genotypes”
and network paths, where each path is viewed as the encoding
of a genotype so that a genetic algorithm (GA) [8] can be used
at the source node of each connection to discover new paths
that may not have been discovered by the smart packets (SPs).
The GA-daemon software runs in a background mode at the
source node of a connection and uses the “crossover’” operation
to splice existing paths and create valid new paths. Through
successive crossover and selection operations, the GA daemon
enables the source node both to compose new routes from the
existing ones and to select which routes to use based on their
“fitness,” which is estimated based on QoS. We discuss this
approach in detail and present an implementation where the
GA runs in background mode so as not to overload the ingress
router. We also provide measurements on a network test bed.
These measurements indicate that when the background-traffic
load is light to medium, the GA can result in improved QoS.
However, when the background-traffic load is heavy, the use of
the GA may actually be detrimental to QoS as compared to the
original CPN routing protocol.

This paper is organized as follows. Section II briefly de-
scribes the CPN routing algorithm. Section III presents a GA
approach to packet routing, while Section IV describes its
implementation on top of CPN. In Section V, we present
measurements on CPN without the GA and, then, a set of
experiments to evaluate the conditions under which the GA
will, or will not provide useful QoS improvements. Section VI
concludes the paper.

II. CPN

CPNs use SPs and acknowledgment packets (ACKs) to select
routes from the user’s source node to its destination based on
the user’s QoS requirement. At each CPN node, RNNs [9]
with RL [10], [11] are used to make routing decisions. Each
output link from a CPN node is represented by a neuron in the
RNN. The arrival of an SP triggers the execution of the RNN
algorithm, and the output link corresponding to the most excited
neuron is chosen as the routing decision. The synaptic weights
of each RNN are updated with the measured QoS values that
are brought back by ACK packets and stored in the nodes’
mailboxes, as described in detail in [4]. The path-discovery
process continues throughout each user’s session, and the most
recently discovered best path is the one that is used by dumb
packets (DPs) carrying the user’s payload to the destination.
The route for the DP is stored in the packet itself and is provided
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by the source node using the routing information brought back
by ACKs.

SPs behave as scouts that are sent out to look for routes to
a destination, and the rate at which they are sent is a fraction
of the rate at which DPs are sent so that they may sample
events at a rate that is proportional to the frequency at which
payload traffic travels through the network. As the SP moves
from node to node, it collects measurements at the nodes (e.g.,
the time at which the visit took place). If the SP does not
reach its destination node after a predetermined number of
hops, which is a multiple of the network’s diameter, the SP
is destroyed. However, if the SP reaches its destination before
that, an ACK packet is sent back to the source along the reverse
of the path used by the SP; the reverse path is chosen, however,
so that any loops in the SP’s path are removed. ACK carries
the measurements collected by the SP, and this information is
used to update the synaptic weights of the RNNs at each of the
nodes using the RL algorithm, which increases the excitatory
value of weights, which have led to successful outcomes, and
weakens the others based on a QoS “goal.” The “goal” is the
metric that characterizes the success of the outcome, such as
packet delay, loss, jitter, and so on. Thus, the RL algorithm uses
the observed outcome of a decision to “reward” or “punish” the
corresponding decision of the routing algorithm so that its fu-
ture decisions will more likely meet the desired QoS goal. The
ACKSs also bring route information, which has been discovered
by SPs back to the source nodes, to be used by subsequent DPs.

III. GA APPROACH TO PACKET ROUTING

GA is a search strategy that is inspired by biological evolu-

tion [8] and which is based on the following features.

1) Population of individuals (or genotypes) where each in-
dividual represents a potential solution to the problem
being considered. In this paper, an individual is a path
from source S to destination D represented by the labels
of each node on the path.

2) Fitness function that evaluates the utility of each indi-
vidual’s possible contribution to solving the problem. In
our case, the fitness of a given path is the observed or
estimated QoS of the path.

3) Selection function that selects individuals for reproduc-
tion based on their fitness. This means that we would
choose paths with better QoS.

4) Genetic operators that are used to alter or combine indi-
viduals to create new individuals, namely crossover and
mutation. If Sz NyD and SuNvD are two valid paths
from source S to destination D, which both use the
intermediate node N, and z, y, u, and v are sequences of
nodes on the two paths, then SuNyD and Sz NvD are
two paths that result from the crossover operation applied
to the two previous paths.

In the approach that we propose, the GA runs as a background
process at each source node to generate and select paths for DPs
based on the QoS goal, and the paths are stored in a stack at the
source node. The fitness of a path is determined from the QoS
measurement data returned by an ACK, which is received in
response to sending an SP or DP along that path. The choice of
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running the GA in background mode at the node is dictated at
this point by the fact that it can be a slow process, and that
it may be manipulating large data sets. Clearly, if we were
able, in practice, to accelerate the GA’s operation via, say, a
hardware implementation at a router, then this choice, and also
the resulting performance, would be different.

A. Paths and QoS

A path w is a variable-length sequence of nodes, which
begins with the source node S and ends with the destination
D. For any nodes a and b, ab is a subsequence in w only if
there is a link (i.e., path of length one) going from « to b. Thus,
w represents any viable path from S to D.

Each path w has a goal value G(w) which is the observed
QoS for that path. G describes how effective the path w is.
Thus, a smaller value of G(w) means that w is more desirable.
A simple example is when G(w) is the number of links on the
path from S to D, i.e., the number of hops. Thus, a conventional
shortest path routing [1] in the Internet protocol (IP) tries to
minimize the function G if the goal function is the number of
hops. However, G(w) may also be the delay or loss of packets,
which is observed over the path w, or the variance in packet
delay, or the power consumed for processing and forwarding the
packet in the hops of a wireless network [7], or the overall secu-
rity level of the path, or combinations of many of these metrics.

We shall say that G is additive if for any path w = «3, which
is the concatenation of two paths v and 3, we have G(w) =
G(a) + G(B). Examples of additive goal functions include
packet delay, path length, loss, variance of packet delay, and
power consumption. Since the CPN algorithm [4], [6] measures
the forward delay of SPs and DPs using the information brought
back by ACKs, it, in fact, not only collects at the source, the
source-to-destination delay, but the ACK also brings back the
delay from any intermediate node on the path to the destination.

In our GA implementation, which uses the preexisting CPN
system, new paths are generated in two different ways.

1) SPs discover routes, and ACK packets bring back valid
routes to the source. These paths are stored into the stack
so that CPN already provides a way of generating new
paths w using SPs, which search their way through the
network, using RNNs and RL, toward the destination.
Conceptually, we may think that this is some kind of
“mutation” operation that CPN already offers to the GA.
The paths in the stack are organized in a list sorted in
order of increasing G(w) value. Therefore, the first path
in the list is the fittest path.

2) At the source, we also generate additional paths using the
path crossover operation that we described earlier using
paths between the same source and destination nodes,
which share the same intermediate node, and which are
already in the stack. If some new path SulNcD, generated
by a crossover from SuNwvD and SaNcD, was not yet
in the stack, then it is placed there with the new goal
value G(SuNc¢D) = G(Su) + G(NeD), assuming that
the goal is additive.

In summary, the GA operates as follows. Every path dis-

covered by SPs and brought back by ACKs naturally becomes
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Fig. 1. Principal data structures of the GA daemon.

an individual in the GA population. The paths with the same
source S and destination D form a GA route repository that
we call the stack, which is limited to some maximum size.
The paths in the same repository are combined to form new
paths, provided they share the same intermediate node. Their
QoS metric, or fitness, is synthesized from those of their
constituents. Whenever a DP needs to be forwarded to the
destination, the path at the top of the stack (i.e., the one with
the smallest goal value) will be used as the source route.

IV. IMPLEMENTATION

Since the stack provides a ranking of paths for some source to
destination pair, the ranking data need to be roughly consistent
with respect to the time when the measurements were taken.
Thus, we have chosen to store a pool of hops together with
the relevant measurement data (e.g., hop, delay, possibly loss,
etc.) and the time stamp indicating when this measurement
was brought back to the source. The actual data structure
representing the paths is then a set of pointers pointing to the
collections of hops, as shown in Fig. 1. As newer measurements
are sent over by the CPN module, hop data in this data structure
is updated, and their time stamp is updated as well. The time
stamp allows us to periodically get rid of obsolete hops from
the hop pool so that the GA engine does not make decisions
based on obsolete measurements.

As mentioned earlier, the size of the data structures that we
have described makes a kernel-level implementation of the GA
daemon rather impractical. Thus, we have implemented the GA
algorithm as a system daemon that runs in the background.
In the sequel, we will present measurement results for CPN
with and without the GA daemon. Note again that CPN is
needed by the GA daemon so that it can receive new paths and
obtain measurements that allow it to update the hops stored in
the stack.

The GA-enabled system also differs from the CPN module
in the way it handles ACKs. While CPN deals with the entire
paths, the GA operates at a finer (hop) level; this means that
caution needs to be taken when stripping a route of loops. Loops
are no longer removed at the destination but, instead, as the
ACK travels back, each node on the return path checks if it
was present twice or more in the SP’s forward path and, if
that is the case, it removes the loop in the ACK and adjusts
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the dates associated with all nodes that were visited between
the source and itself to eliminate the extra delay introduced
by the loop. For example, if the ACK contains the return path
(a,b,c,d, e, c,l,m), so that m is the source, the loop {c, d, e, c)
will be removed at node ¢ when it receives the ACK. The dates
of nodes a and b are then reduced by the amount of the total
forward delay in the loop time.

The GA daemon can be fired up at any time when the CPN
module is loaded with no initial knowledge of the network. It
consists of a main loop, which is in charge of polling the kernel
for new paths, checking its internal data structures for size and
consistency, selecting individuals for crossover and doing the
actual crossover, and periodically updating the CPN module’s
DP route repository. The data-exchange operations between the
CPN kernel module and the GA daemon are bidirectional as
the module passes measurements to the daemon and, in return,
the daemon periodically updates the module’s route repository
with the paths that have the best fitness at that time. The GA
daemon is always the initiator of the data exchange so that the
kernel module does not need to keep track of the presence or
absence of the daemon to route CPN traffic. This way, we also
eliminate lockups that would occur if the kernel were to probe
the daemon while it is sleeping.

In our first implementation, the GA daemon would always
select the best (i.e., fittest) path for a given destination. How-
ever, this led to two significant problems: 1) the same routes
were being used too often leading to path overload, and 2) there
was an insufficient generation of new data on different paths so
that hop data related to unused paths became obsolete and had
to be eliminated. Thus, we chose to modify the GA daemon so
that it provides, in round-robin mode, the identity of each of
the paths that are within 5% of the best QoS. The round-robin
policy on the best routes then acts as a simple load-balancing
mechanism to avoid saturation of any given path, and also offers
the possibility to gather measurement data concerning a much
bigger set of hops. Another way of increasing the measurement
data available to all connections from a given source is to share
the hop pool among several different connections emanating
from the same source.

V. PERFORMANCE MEASUREMENTS

Measurements were conducted on the test bed shown in
Fig. 2. Each node is a PC equipped with four Ethernet point-
to-point ports, where the number of ports is related to the cost
of the cards that we were able to use. Each port uses a 10-Mb/s
Ethernet link connected by point-to-point copper cable to



1250

without background traffic 1.6Mbps background traffic

11 11
10F 10
9 1 9r 1
A BT RO
8_A’£" A <7 8rac A A A=K X g
X X
X, X Lex R R UV SIS O
e XX Cage X x ) x
& 7r > 7r
Q Q
2 2
=9 =
kS) )
f= f=
9 5t 9 5¢
F- L
g g
4 4
3r 3
2r 2
1+ —-©- delay H 1+ —-©- delay
x- hops x- hops
A. hops+Delay A. hops+Delay
0 N T 0 \ \ N N
4 6 8 2 4 6 8
rate (Mbps) rate (Mbps)
3.2Mbps background traffic 6.4Mbps background traffic
11 T T T 11 T T T
10 10
° _G\e\e—e_e_ﬁ,——‘g/g\&_g | o 5
N
. : VPN XA
BlA- A A AKX x 8 A~ S
x x. .ix..X' X, x x WX
< S N x*'x e x
= r = 7r
Q. Q.
& 2
29 =9
k) )
f= [=
2 51 o9 5¢
= =
g g
4 4
3 3
2 2
1F -©- delay . 1k -©- delay
x- hops x- hops
A hops+Delay A- hops+Delay
0 . . N N 0 \ . N N
2 4 6 8 2 4 6 8
rate (Mbps) rate (Mbps)
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another node. The CPN software is integrated into the Linux
kernel 2.4.x. with minimal changes in the existing networking
code, and is independent of the physical transport layer. The
network interface is compatible with the popular BSD4.3 socket
layer in Linux, and provides a single application program
interface (API) for the programmer to access the CPN protocol.
To maximize the length of the paths, and also have a large
number of possible paths from the source to the destination,
we chose the source node to be the one at the left edge of the
test bed with the destination being the one at the right edge.

We will first report on some measurement results without
having the GA in operation and then discuss the results with
the GA.

A. Pure CPN: Experiments Without the GA Daemon

First, we ran several experiments for CPN, without the GA
daemon running, and use different QoS goals for the user’s
connection, as indicated below. The user’s connection is con-
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stituted by a flow of 1024-byte UDP packets at constant bitrate
(CBR). Each measurement point is based on 10 000 packets that
were sent from the source to the destination, and we inserted
random background traffic into each link in the network with
the possibility of fixing its rate at different levels including
“no background traffic,” 3.2-MB background traffic, 6.4-MB
background traffic, and higher levels as well.

The CPN routing algorithm was used throughout the experi-
ments using three different QoS goals: 1) delay [Algorithm-D]J;
2) hop count [Algorithm-H]; and 3) the combination of hop
count and forward delay [Algorithm-HD]. The measurements
concern the average hop count and the forward delay under
different background-traffic conditions.

Fig. 2 shows that the shortest path length from the source
node (#201) to the destination node (#219) is seven, and that
there are only five distinct shortest paths. For example, one
of them is route (201 — 202 — 214 — 215 — 216 — 217 —
218 — 219).

In Fig. 3, we report the measured average number of hops
traversed from the source to the destination when different algo-
rithms are used. When hop count is used as the QoS goal, we see
that the average number of hops under different background-
traffic conditions is close to the minimum of seven. In other
words, the adaptive and distributed approximation to minimum
hop routing, which is being offered by CPN, is actually working
well. The forward delay is approximated as one half of the
round-trip delay. From Fig. 4, we are surprised to observe
that if the connection’s traffic rate is less than 3.2 Mb/s, then
Algorithm-H achieves the smallest delay, while Algorithm-D
is the worst. However, when the connection’s traffic rate is
between 3.2 and 5.6 Mb/s, the performance of Algorithm-HD is
better but Algorithm-H and Algorithm-D are almost the same.
All algorithms are equivalent with respect to measured delay
when the connection’s traffic rate is between 5.6 and 7 Mb/s.
When the connection’s traffic rate is extremely high (> 7 Mb/s),
Algorithm-D gives the smallest delay, and Algorithm-H is the
worst. When we increase the background traffic per link to
3.2 Mb/s (Fig. 5), if the connection’s traffic rate is less than
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3.2 Mb/s, Algorithm-H is still the best, and, again, Algorithm-D
is the worst. But if the connection’s traffic rate is between 3.2
and 6.4 Mb/s, Algorithm-HD is the best and Algorithm-H is
the worst. When the connection’s traffic rate is higher than
6.4 Mb/s, Algorithm-D performs as well as Algorithm-HD,
and both of them are better than Algorithm-H. Results are
similar with the 6.4-Mb/s background traffic per link except
that the threshold points change (Fig. 6). Thus, if the network
topology is stable and the network is lightly loaded, the shortest
path is the best choice as far as the forward delay is concerned.
When the network is heavily loaded or saturated, sticking to the
shortest path is a bad choice, and longer paths offer lower delay.

B. Measurements When the GA Daemon Was Running

When the network is initialized, all the nodes start with an
empty route repository and empty GA pools. Then, the CPN
path-finding algorithm is started at the source node, and SPs are
sent out. Once the first ACK comes back from the destination
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Fig. 7. CPN with and without the GA. Measured delay and loss without
background traffic.

carrying the first path that has been discovered, DPs from the
source to the destination are sent. When the GA algorithm
was not in operation, we simply disabled the GA daemon. On
the other hand, if the GA daemon is enabled, when the first
ACK arrives at the source node, the GA daemon is automat-
ically started, and it will generate paths as described in the
previous sections.

In a first set of experiments, the destination was not fixed,
but chosen at random, so as to emulate an environment where
the source is handling many different connections. As indicated
previously, the GA daemon groups the paths into subpopu-
lations based on the destination, and crossover is carried out
for each given destination. However, the hop pool is common
to the various subpopulations, which means that it shares
measurements.

In all the experiments, we used delay only as the QoS goal
for CPN and for the GA daemon, and we measured both the
resulting loss and delay for the connections, but only for the
payload traffic carried by the DPs, since the objective is to
support the QoS needs of the users and to use SPs only for
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helping to find the best paths. Loss was measured simply by
counting the number of ACKs r received for the DPs, and the
number s of DPs that were transmitted so that the loss rate
is I =1—r/s. Note that this value is a pessimistic estimate
because some ACKs will also be lost so that we are in fact
measuring the total loss of DPs plus ACKs.

The experiments were run with different rates of back-
ground traffic, composed of 512-byte packets traveling in both
directions of each link. The size of all DPs was fixed to
1024 bytes. We varied the connections’ DP rate between 100
and 800 packets/s. For each value, we ran ten experiments, and,
in each experiment, the source node sent out 10000 DPs to
each destination. The average forward delay and loss rate were
computed as an average for each DP transmission rate over all
the ten experiments. The results without background traffic are
shown in Fig. 7.

We observe that in the absence of the background traffic,
CPN with the GA outperforms simple CPN. When the DP input
rate is less than 600 packets/s, the delay with the GA is only
80% of that without the GA; loss rates are both small enough
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to be considered to be zero. When the DP input rate exceeds
600 packets/s, some packet loss is observed and the average de-
lay increases significantly. The delay is still somewhat smaller
with the GA, but the loss rates are indistinguishable. Exper-
iments were also conducted with the 800-Kb/s background
traffic on each link, and the results were almost identical.

We suggest that the positive effect of the GA at light
background-traffic rates may be due to the fact that when its
information is up to date, the GA focuses its selection on
better overall performance. When background-traffic rates are
high, state information changes very rapidly, and “fresher”
measurement information is used by CPN, while the GA mixes
this with “older” and, hence, less relevant data.

We increased the background-traffic level to 2.4 and 4 Mb/s
on each link, respectively, and the resulting measurements are
shown in Figs. 8 and 9. We observe that the QoS is still better
with the GA than without it, provided that the input rate is
low. When the DPs’ input rate exceeds a certain threshold
(e.g., 300 packets/s in the 4-Mb/s per link background-traffic
scenario), the GA actually results in worse QoS. We may
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explain this as follows. At heavier network load, since the DP
traffic has an additive effect on the existing link traffic, the DP
traffic will significantly increase the observed delay. SPs will
try other routes, and the corresponding ACKs will bring back
information about the paths that are momentarily less loaded.
These paths will be immediately used by CPN when the GA is
not enabled, which leads to path switching and distribution of
the traffic on multiple paths. On the other hand, when the GA
daemon is enabled, less recent information is necessarily being
used overall to select paths, and the resulting QoS will also
be worse.

When we increase the background traffic further to 5.6 Mb/s
on each link, the previous results are accentuated, as shown
in Figs. 10 and 11. At 5.6-Mb/s background traffic per link,
the threshold input rate at which the GA is underperforming,
as compared to the system without the GA, is even smaller
at 200 packets/s. However, at a very heavy background traffic
of 8 Mb/s per link, we notice that since the network is satu-
rated, whether we use or not use the GA makes a very little
difference.
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Fig. 11. CPN with and without the GA. Measured delay and loss for 8-Mb/s
background traffic.

VI. CONCLUSION

This paper describes an innovative use of GA at the ingress
level for dynamic adaptive routing in packet networks. We have
presented the basic concept, as well as its implementation, in
our existing CPN test bed. We have also reported measurements
obtained under different background-traffic and connection-
traffic levels.

We have implemented the GA daemon to run in background
mode at the source nodes of connections so that through
crossover and selection operations, the GA enables the source
node both to compose new routes from the existing ones and
to select routes based on their QoS. Furthermore, we have
introduced a round-robin policy on the best routes to act as
a simple load-balancing mechanism and as a way to collect
measurement data for decision making from a wider variety
of network hops. When the network is idle, the GA daemon
uses a total of 376 kB of memory, of which 316 kB is shared
memory used by standard libraries. As for processor usage, it
is difficult to give an exact figure, although when we ran the
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GA for an hour with a connection input rate of 800 packets/s,
the cumulated processor time used by the GA daemon was
in total below a second. Therefore, running a GA daemon in
the background at the source node consumes very few system
resources.

We first provided experimental data from measurements with
“pure” CPN, i.e., when the GA daemon was turned off, and used
different QoS goals to route packets for the user’s connection.
These measurements show on one hand that CPN actually
works, in the sense that, using the hop count as the QoS goal
actually does come close to minimizing the number of hops.
However, CPN, actually, is also useful in under medium to
heavy traffic conditions; trying to minimize the number of
hops will not in itself minimize the packet delay and loss.
Thus, the use of composite QoS goals, including delay, for
instance, does provide an improvement to the QoS that the user
will perceive.

We, then, present experimental results when the GA daemon
is activated on top of CPN. The experiments now indicate that
when the overall network load is light to medium, or when
the user’s packet input rate is low, the GA clearly improves
the observed QoS over the levels observed when only CPN is
used. On the other hand, when the background traffic becomes
heavier, and also when the packet input rates are high for the
connection itself, the user end-to-end delay measured for the
DPs with the GA in operation is actually somewhat worse
than when the GA is turned off. This suggests that overall
improvement could be achieved by adaptively following, or not,
the advice provided by the GA. This particular point will be
examined in future work.

The main conclusion of this paper may be that smart
techniques, such as the GA approach, which operate at the
ingress nodes of a network, or at the peer points of a peer-
to-peer network, of connections cannot beat techniques where
smart decision making is taking place in a distributed manner
throughout the network, such as “pure” CPN. Thus, one pos-
sible direction of future research would be to investigate the
use of GA-type decision mechanisms in a staged manner, at
intermediate nodes in the network, to move the decision making
closer to the locations where the actual traffic-related events are
taking place.
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