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Abstract

This project is based on the previous research in Cognitive Packet Networks, but intro-

duces new approach for QoS-based bilateral traffic differentiation. CPN protocol benefits

from the algorithms of user-defined QoS routing. Any user is independent to choose a QoS

that would suit its requirements to the path depending on type of data sent. The QoS is

defined beforehand and does not change for a given user traffic transmission. This project

innovates by introducing QoS differentiation between user’s transmission directions. The

idea is that in two users bilateral communication scheme, each user’s node turns out to

be a source and a destination at the same time, managing two types of flows. Traffic,

originated by a user, is regarded as Uplink, and traffic, sent back by a user in response, is

regarded as Downlink. In fact, demandining four distinct QoSes per direction, this project

offers another approach that is differentating QoS between sender node roles (source or

destination) instead of user’s traffic direction (uplink and downlink). Traffic volume as-

symetry between received and sent data was taken as a triggering condition. According to

this the smaller traffic is ruled by less Delay QoS and the larger traffic - by less DP Loss

QoS. DP Loss QoS was implemented in the packets originating nodes and was additionally

improved with multiple path tracking algorithm. Owing to several path availability and

their tracking, a sender can always select the less DP Loss path for transmission.



iii

Acknowledgment

I would like to express my gratitude to Professor Erol Gelenbe, my Project Supervisor.

Without his advise and explanations this MSc thesis could have not been finished. I was

inspired by Prof. Gelenbe ideas while developing the main objective of the project. I

admire the level of Prof. Gelenbe expertise, and my project highly benefited from his

constructive critisism. It was an outstanding and exciting experience to work under Prof.

Gelenbe supervision.

I highly appreciate the help and guidance provided by Dr Ricardo Lent for the

programming part ot the project. Receiving explanations from the programmer of the

first version of Cognitive Packet Network protocol was extremely useful for my ideas

implementation.



iv

Contents

Abstract ii

Acknowledgment iii

Contents iv

List of Figures vi

List of Tables vii

Chapter 1. Introduction 1

1.1 The Cognitive Packet Network (CPN) . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 CPN Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Random Neuron Network (RNN) . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2. Bilateral Traffic Differentiation 17

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 QoS Decision Logic and Flow Control . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Round-robin for Smart Packets . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 QoS Decision Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Less Loss QoS with path tracking . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Smart Packet Loss QoS in Intermediate Nodes . . . . . . . . . . . . 22

2.3.2 Dumb Packet Loss with path tracking in Sender Nodes . . . . . . . 23

Chapter 3. Experiments and Results 26

3.1 The CPN testbed and Tests Scenarios . . . . . . . . . . . . . . . . . . . . . 26

3.2 Experiments with One User per Sender . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Low traffic One User Scenario Results . . . . . . . . . . . . . . . . . 29

3.2.2 Large traffic One User Scenario Results . . . . . . . . . . . . . . . . 31

3.3 Experiments with Two Users per Sender . . . . . . . . . . . . . . . . . . . . 33



Contents v

3.3.1 The same path usage results . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 The evaluation of distinct paths number in the CPN network . . . . 34

3.3.3 The Paths Usage in the 4 QoS simulation . . . . . . . . . . . . . . . 36

Chapter 4. Conclusions and Future work 43

Bibliography 45



vi

List of Figures

1.1 The CPN network model for traffic differentiation per node. . . . . . . . . . 2

1.2 The CPN network model for traffic differentiation per user. . . . . . . . . . 3

1.3 CPN packet format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The Flow Control Logic for QoS decision making. . . . . . . . . . . . . . . . 19

2.2 Mailbox Format for SP Loss QoS in intermediate nodes . . . . . . . . . . . 23

3.1 The CPN testbed used in the experiments . . . . . . . . . . . . . . . . . . . 27

3.2 The Loss percentage plot for Low Traffic Test scenario. . . . . . . . . . . . . 30

3.3 The percentage of path usage for Low Traffic Test scenario . . . . . . . . . 30

3.4 The Loss percentage plot for Large Traffic Test scenario . . . . . . . . . . . 31

3.5 The Loss percentage plot for Large Traffic Test scenario . . . . . . . . . . . 32

3.6 The test scheme for 4 QoS Simulation (two users per sender node) . . . . . 33

3.7 The percentage of time two distinct QoS algorithms select the same path

for DP transmission from cpn002 . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 The percentage of time two distinct QoS algorithms select the same path

for DP transmission from cpn026 . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 The percentage of time of N simultaneous paths in the CPN network vs Rate 37

3.10 The PDF of N simultaneous paths in the CPN network . . . . . . . . . . . 38

3.11 The percentage of Paths Usage by cpn002 . . . . . . . . . . . . . . . . . . . 39

3.12 The percentage of Paths Usage by cpn026 . . . . . . . . . . . . . . . . . . . 39

3.13 The percentage of Paths Usage by QoS DELAY . . . . . . . . . . . . . . . . 40

3.14 The percentage of Paths Usage by QoS LOSS . . . . . . . . . . . . . . . . . 41

3.15 The percentage of Paths Usage in the tested CPN network . . . . . . . . . . 42



vii

List of Tables

3.1 Paths Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



1

Chapter 1

Introduction

The Cognitive Packet Network (CPN) is a Software Enabled Network that manages an

arbitrary number of network users over an open source LINUX based infrastructure, and

offers differentiated quality of service (QoS) over different network paths [1], [2], [3]. CPN

uses three types of packets: Smart Packets (SPs) that seek out paths for each individual

user based on that user’s QoS requirements, acknowledgement (ACK) packets that bring

back the paths that are discovered, together with their QoS value, to the source node of

a user, and dumb packets (DPs) whose role is simply to carry payload. DPs are source

routed, based on the path that a user will have selected using the different paths that

have been received via ACKs. Thus a user selects the best path among the choices it has

been offered so that its traffic can reach the destination based on the user’s decision in the

framework of its own QoS objective or Goal. The QoS objectives for a user in CPN can

be the conventional metrics that are typically optimized in networks, such as end-to-end

packet delay, loss or jitter, or a combination thereof [4]. However CPN has also been used

to achieve the optimization of more sophisticated QoS Goals such as security [5], [6] and

energy savings [7], [8], or a combination of energy savings and delay [9]. This research

innovates with respect to previous work on CPN by addressing QoS Goals that may be

asymmetric with respect to traffic that is being forwarded from a source to a destination,

and with respect to the traffic that the source receives from the destination. Thus in this

paper we investigate the uplink and downlink traffic differentiation using the Cognitive

Packet Network (CPN) paradigm. Uplink traffic is defined as data that travels from the

source towards destination. The initial source is regarded as the Uplink Sender (US).
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Downlink traffic is data that travels back from the destination towards the source. The

destination server is then also a sender, but is distinguished as a Downlink Sender (DS).

The overall scheme we consider is shown in Figure 1.1. Most of the applications that may

use this described scheme of communication can require different QoS for either uplink or

downlink transmission. If the uplink traffic needs the shortest packet delay, it may not be

the case for the downlink traffic. For the downlink branch it could be more important to

have a more secure path, or less loss, instead of shortest delay.

Uplink Sender

CPN

Downlink Sender

Uplink or US TX Traffic

Downlink or US RX Traffic

Figure 1.1: The CPN network model for traffic differentiation per node.

There are different approaches that one may use to differentiate between the uplink

and downlink QoS Goal. One can obviously treat them as two distinct connections with

the Source of one being the Destination of the other, and vice-versa. If the source and

destination play a symmetric role, then both of them will have an uplink and downlink

behaviour, so that both of these two ”connections” may be differentiating in terms of the

QoS Goal with respect to the data they are sending. For instance the node A (in an A

to B and vice-versa connection) will sometimes be sending data to B as an Uplink, and

sometimes as a Downlink that is going back from A to B. Thus the traffic flows from A

to B may have differentiated QoS, and hence also distinct paths, based on whether the

traffic from A to B is an Uplink or Downlink traffic (see Figure 1.2).

One can of course, create four distinct connections, two from A to B (Uplink and

Downlink) and similarly from B to A, with distinct QoS Goals, and possibly distinct paths

being utilized. However a simpler scheme would use a trigger so that based on the role



1.1. THE COGNITIVE PACKET NETWORK (CPN) 3

it is assuming, the source can become a destination, and vice-versa, so that it can switch

its role, and hence also A and B can change the QoS Goal that they use based on the

data that they are forwarding. This research will investigate the latter approach because

it offers a uniform way of handling such bilateral and potentially asymmetric connections.

User A

CPN

Uplink 

Uplink

Downlink

Downlink 

Solid Line:       A → B

Dashed Line:   B → A

User B

Figure 1.2: The CPN network model for traffic differentiation per user.

1.1 The Cognitive Packet Network (CPN)

The Cognitive Packet Network is a Self-Aware network that uses adaptive algorithms for

path searching without routing tables, available in the nodes. The absence of routing

tables means that every node in CPN is aware about its immediate neighbours only.

Thus, the paths are searched on demand, when there is a payload packet for transmission.

This property distinguishes CPN from other types of Self-Aware Networks. CPN is not

loaded with packets flows that are generated for keeping routing tables up-to-date. CPN

possesses the QoS driven search algorithm [10]. The variety of modern applications

that use networks could not be satisfied with one shortest path QoS. Some applications

could demand other QoS (loss, security, delay) accepting the longer path. CPN provides

algorithms that search, maintain and update path depending on the distinct QoS Identifier

stamped on the CPN packets.
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CPN is a software based network and is implemented on Linux infrastructure. CPN

is integrated with IP protocol, IP packets are treated as a payload [11]. IP packets are

encapsulated into CPN packets with CPN header added, after that CPN packets are passed

by the code to Data Link Protocol Layer. Data Link Protocol depends on the physical

media used for transmission. In this project Ethernet protocol was used. This section

gives detail description of CPN protocol elements, algorithms used for adaptive routing,

such as Random Neuron Network(RNN) and Reinforcement Learning (RL).

1.1.1 CPN Elements

There are three distinct types of packets in the CPN. CPN packets have the same for-

mat but different roles. These packets are: Smart Packet (SP), Dumb Packet (DP)

and Acknowledgement Packet (ACK). ACK packets are also divided into two groups:

Smart Packet Acknowledgement (SACK) and Dumb Packet Acknowledgement (DACK).

The CPN packet format is given in the Figure 1.3. The CPN packet has a variable

length that mainly depends on the route length. The packet consists of such fields as:

CPN Header, Route field, Cognitive Map (CM) and Data field.

The CPN Header has several sub-fields:

• Version. This field contains CPN version number. Current is 3.

• Pkt Type. This field defines the type of the CPN packet: SP, SACK, DP or DACK.

• Proto. This field contains the QoS Identifier that is used for a given packet.

• Route Length. The length of the route in number of hops excluding source and

destination is written into the field.

• Flags. The content of the field depends on the QoS stamped on the packet. This

field defines the CM structure.

• CM Index. This is a pointer field that stores the index number of the current node

in the whole route. Respectively, CM Index is zero for the source node, and CM

Index is (CMRouteLength+ 1) for the destination node.

• User ID. This field was not in original CPN design and was added for this project
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fulfilment. The field stores a user’s numeric identifier that originates DPs. DACKs

that travel back in response to DPs has the same User ID.

• Route ID. This field was not in original CPN design and was added for this project

fulfilment. This field contains the Path ID that has been selected for the DP trav-

elling.

• Destination Address. The IP address of the destination node is written into this

field.

• Source Address. The IP address of the source node is written into this field.

Route field stores the ordered sequence of intermediate nodes from the source

towards the destination.

CM field stores the QoS measurement used for RL. Depending on the QoS algo-

rithm CM could store a vector of values, one value or could be empty. If CM is a vector,

each vector element stores distinct measurement value per every node in the route. If CM

is a field, it is recurrently updated while a packet travels through the route. If CM is

empty, no measurements are collected for a given QoS.

Data field is designed for payload.

Each type of packet in CPN was designed to fulfil unique functions that are de-

scribed below.

SP is used for adaptive routing, this packet searches for the path towards the

destination. There are two available algorithms for SP path searching: random search

and Reinforcement Learning (RL). In the random search, after arriving to the node, SP

selects the next hop randomly. For the RL next hop decision making, SP uses Random

Neuron Networks (RNN) that reside at every node it visits. While travelling SP collects

the QoS measurements and stores them into the CM. As CPN uses probabilistic approach

for route discovering, SPs could not be allowed to search eternally. After a timeout a

SP, that has not managed to reach the destination, is destroyed. SP does not carry any

payload, so that the Data field of SP is Null.

SACK is a packet that is created upon SP arrival to the destination and its purpose

is to bring back the discovered route to the source. SACK travels back to the source

following the reverse route excluding the loops. During its travelling SACK updates the
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ChecksumVersion
Pkt 

Type

Route LengthProto Flags CM Index CM Length
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Destination Address
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Hop 1
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Cognitive Map (CM)

User ID Route ID

Figure 1.3: CPN packet format.

Mailboxes (MB), using the measurements collected by the original SP. MB values are used

for RNN Rewards computing and weights update. SACK’s Data field is also Null.

DP is a payload packet, it carries the IP packet that resides in the Data field of

the packet. DP uses the route brought by the SACK to travel towards the destination.

Upon arrival to every intermediate node DP does not interact with RNN or utilize a RL

algorithm for next hop deciding. The whole route is recorded into the Route field of the

packet, and DP follows it. For some QoS algorithms, DPs also collect the measurements

during the travelling and store them into the CM.

DACK is generated in the destination node upon DP arrival. It travels back to the

source, informing it that DP was delivered. For some QoS algorithms, DACK updates the

MBs as SACK does.

One or several MBs reside in every CPN node. A distinct MB is created per Source,

Destination, QoS Identifier combination. Each entry in MB refers to the Neighbour-

Neuron Address. When SACK or DACK travels through the node, the corresponding

Neuron entry value or MB value itself is updated with QoS measurement that was collected.

To conclude, CPN consists of the following elements: packets (SP, DP and ACK),

RNNs and MBs. Packets are generated by the source and destination nodes. RNNs and
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MBs are created and maintained in the intermediate nodes of CPN.

1.2 Random Neuron Network (RNN)

Random Neuron Networks implement the biological mechanism of interaction in computer

networks. This type of recurrent networks was invented and proposed by E. Gelenbe [12],

[13], [14]. In the RNN, consisting of n neurons, the communication between neurons is

modelled as exchanging of positive (or excitatory) and negative (or inhibitory) signals.

Additionally, neurons receive signals outside the network (exogenous signals), and signals

can also leave network. The results of signals exchange is changing neurons’ potential

level, which is defined as a non-negative integer. Each positive signal increases neuron’s

potential by one, and negative decreases by one, so that these signals are the spikes of

unit amplitude. If neuron potential is zero, before negative signal arrival, then it has no

effect on the potential. Whenever neuron’s potential is more than zero, it is regarded

to be in the ”excitation” state, so that it starts to fire or to generate spikes. On other

hand, firing makes neuron to produce signals that also decreases this neuron’s potential.

Neuron i sends signal to neuron j with rate r(i), so that intervals between firings are

exponentially, independently and identically distributed. Signal could be a positive signal

with probability p+(i, j), or inhibitory signal with probability p−(i, j), or it could leave

the network with probability d(i). Thus, the total transition probability for neuron i is

equal 1:

d(i) +
∑
j

[p+(i, j) + p−(i, j)] = 1, 1 ≤ i ≤ n (1.1)

Neuron produces excitatory signals with rate w+(i, j) = p+(i, j)r(i) and inhibitory signals

with rate w+(i, j) = p+(i, j)r(i). At the same time, neuron i receives exogenous signals

that are modelled as stationary Poison processes of rate Λ(i) for positive signals, and λ(i)

for negative.

At each moment of time t the RNN is characterized by vector of neurons’ potentials

k(t) = (k1(t), ..., kn(t)), where k = (k1, ..., kn) is one distinct value of vector. Obviously,

from the RNN model given above, {k(t), t ≥ 0} is continuous time Markov chain. If
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stationary probability distribution exists p(k) = limt→∞ Prob[k(t) = k], then it could be

calculated by solving Chapman-Kolmogorov equations in steady-state given in 1.2:

p(k)
∑
i

[Λ(i) + (λ(i) + r(i))1[ki > 0]] =

=
∑
i

[p(k+i )r(i)d(i) + p(k−i )Λ(i)1[ki > 0]

+p(k+i )λ(i) +
∑
j

[p(k+−ij )r(i)p+(i, j)1[kj > 0]

+p(k++
ij )r(i)p−(i, j) + p(k+i )r(i)p−(i, j)1[kj = 0]]] (1.2)

where 1[.] is a function that is equal zero, if condition in the brackets is false, and equal

to 1, if condition is true. The potential vector values are defined, as follows:

k+i = (k1, ..., ki + 1, kj , ..., kn)

k−i = (k1, ..., ki, kj + 1, ..., kn)

k+−ij = (k1, ..., ki + 1, kj − 1, ..., kn)

k++
ij = (k1, ..., ki + 1, kj + 1, ..., kn) (1.3)

These equations are also defined in the RNN theory as network global balance equations

and they describe all the processes that occur in the network. It will be shown further

that RNN possesses a graceful and computationally efficient solution for the stationary

distribution calculation.

In the CPN design, RNN is used to perform routing decisions. One or several RNNs

are created in every intermediate CPN node per Source, Destination and QoS Identifier

Combination. Each neuron in RNN represents one immediate neighbour of a given CPN

node. The RNN neuron properties apply to the CPN protocol, so that at the firing

state neuron i produces excitatory or inhibitory signals with rates w+(i, j) and w−(i, j),

j = 1...n. The CPN protocol benefits from RNN usage, because each CPN node requires

information only about immediate neighbours to be able to perform routing decisions.

When a next hop is to be selected for a packet with a corresponding Source, Destination
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and QoS ID set, the algorithms tries to find the most ”excited” neuron to send the packet

to. For that purpose the steady-state and stationary distribution of the corresponding

RNN should be found, if it exists. To solve the problem the product form solution is used.

The product form solution theorem is given below and its proof could be found in

[12], [13], [14]. Let the stationary probability that neuron i is in firing state to be defined

as:

qi = lim
t→∞

Prob[qi > 0] =
λ+(i)

r(i) + λ−(i)
(1.4)

where λ+(i) and λ−(i) for i = 1...n are defined by the system of non-linear equations,

called signal flow equations:

λ+(i) =
∑
j

qjr(j)p
+(j, i) + Λ(i) =

∑
j

qjw
+(j, i) + Λ(i)

λ−(i) =
∑
j

qjr(j)p
−(j, i) + λ(i) =

∑
j

qjw
−(j, i) + λ(i) (1.5)

If a non-negative and unique solution exists for equations 1.5, such that qi < 1, 1 ≤ i ≤ n

then

p(k) = lim
t→∞

Prob[k(t) = k] =

n∏
i=1

(1− qi)qkii (1.6)

The solution was proved to be unique [13]. The average potential of neuron i in steady

state could be found as Ai = qi/(1−qi), so that a neuron with the largest firing probability

will have a largest potential. Thus, knowing the stationary probability of each neuron to

be excited allows to estimate the neuron with the largest potential that is necessary for

routing decision in CPN.

The RNN theory is not limited to model and solution given above. It was extended,

so that new types of random networks were invented and investigated, such Gelenbe or

Generalized Neuron Networks (GNN) and Multiple Signal Class Random Neuron Networks

(MCRNN) [15], [16], [17], [18]. These types of networks model more generalized and

complicated cases that could occur in real networks or applications.

In the GNN networks, the excitatory and inhibitory signals are accompanied by

extended signals with a more sophisticated behaviour, like interactions [15], or neu-

rons potential values vary in extended way, allowing bipolar values (BGNN), or clamping
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(CGNN) [17], [18]. Synchronous interactions occur in the RNN when the firing in one

neuron i results in a excitatory signal that arrives to another neuron j and triggers firing

in it, so that the described cycle is repeated by the second neuron j over the third m

or several neurons, producing a cascade of firings. Such extended behaviour introduces

additional term into the global balance and signal flow non-linear equations Q(i, j,m) and

additional value of potential vector k, that describes the extended behaviour. The RNNs

with interactions were investigated in the scope of clustering in large networks, when a

groups of neurons closely interact, so that the changes in one trigger the same changes in

neurons of one cluster. In BGNN all neurons are divided into two groups with positive

and negative behaviour. Positive neurons exchange signals as ordinary RNN neurons. The

negative neurons do it completely in the opposite way. Inhibitory signals increases the

negative potential of the neuron, excitatory signals decreases it. If positive signal arrive

to the negative neuron with zero potential it does not affect it. BGNN introduces changes

to signal flow non-linear equations, so that rates for negative and positive neurons are

treated separately. In CGNN the neuron’s average potential is not allowed to be below

some pre-defined constant, called a ”clamping” constant. The both BGNN and CGNN

are widely used as universal function approximators.

In MCRNN networks, there are several classes of excitatory and inhibitory signals

that circulate in the network. Signals of one class change neuron potential of corresponding

class, so that the resulting neuron potential is defined as a sum of all classes potentials. In

particular, having a set of C classes in the RNN, consisting of n neurons, the potential of

neuron i will be equal ki =
∑C

c=1 kci. Each element in the potential vector is a vector itself,

representing the values of class potentials in one neuron. The classes interact between each

other, so that one class signal, triggered by the firing of the same class in one neuron, could

cause the changes of another neuron potential in the same or another class. MCRNNs

suit the requirements of complex and sophisticated applications that demand from RNN

to process inputs of number of variables.

If steady-state exists, the stationary distribution for extended types of RNNs could

be always found by means of product-form solution. The product-form solution is gen-

eralized for any extended type of RNN network, so that the stationary distribution is a
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product of probabilities of neurons to be in excitation state. The main problem is the eval-

uating of the stationary distribution existence. The enough condition for any RNN, that

helps to define existence, was provided in [19]. It advises to find the fixed point y∗ (single

class) or y∗ (multi-class) for the given signal flow equations 1.5, which is always available

according to Brouwer’s theorem. Eventually, the stationary distribution p(k) > 0 exists,

if 0 ≤ qi(y
∗) ≤ 1, for i = 1, ..., n, and it is not available, if qi(y

∗) > 1. In other words, the

product-form solution for extended RNNs is generalised as a fixed-point solution.

There is another remarkable property of RNN that makes it suitable for a vast

of applications. This property is Learning [14], [19]. The RNN stationary probability

distribution is updated through excitatory and inhibitory rates updating. In the RNN

Learning theory these rates are also defined as weights. There are two types of Learning

in RNN: Gradient-Descent Learning and Reinforcement Learning. The first type of RNN

learning performs calculation of weight matrices W+
k and W−k , with purpose to provide the

desired output with respect to given input. Consider the set of K input exogenous rates

(excitatory Λk and inhibitory λk) and the set of desired and pre-defined neuron values

yk = (y1k, ..., ynk), the algorithms aims to minimize quadratic error or ”cost” function:

Ek =
1

2

n∑
i=1

ai(qi − yik)2, ai > 0 (1.7)

The stationary excitatory probabilities qi are calculated with respect to input exogenous

rates from the signal flow non-linear equations. The equation 1.4 can be re-written as

follows:

qi =
N(i)

D(i)
(1.8)

where N(i) and D(i) are defined as

N(i) =
∑
j

qjw
+(j, i) + Λ(i)

D(i) =
∑
j

qjw
−(j, i) + λ(i) + r(i)
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The weight update is conducted by formula, as follows:

wk(u, v) = wk−1(u, v)− η
n∑

i=1

ai(qi − yik)[dqi/dw(u, v)]k (1.9)

The term wk(u, v) is taken either equal to positive weights, or to negative weights. The η

constant is a learning rate that is chosen arbitarly and could be updated during algorithm

running. After the derivative values calculation the weight matrices are computed:

dqi/dw
+(u, v) = γ+(u, v)qu(I −W )−1

dqi/dw
−(u, v) = γ−(u, v)qu(I −W )−1 (1.10)

In the equation 1.10 the value of W is equal to [w+(i, j) − w−(i, j)]/D(i), i, j = 1, ..., n.

The γ+(u, v) and γ−(u, v) term calculation and the Gradient-Descent algorithm steps

could be found in [19]. The iterations for one successive value of input k are repeated,

until the difference between to successive matrices is below some pre-defined threshold, or

sometimes for calculation speed only one iteration is performed. The algorithm theory was

extended to multi-class RNNs that sufficiently enlarged the applications of this learning

technique [14].

The Reinforcement Learning differs from Gradient-Descent Learning and has an

aim to update neurons values, to reward or to punish them, according to the goal function

that is desired to be approached, and it is widely used in the network applications. The

RL algorithm also updates the stationary distribution through weights update. This type

of Learning is applied in the CPN protocol and described in details in the next section of

this chapter.

As it was mentioned before, learning in RNN allows to perform functions approxi-

mation. After processing a set of input parameters RNN can approximate the relationship

between incoming and output values in the form of some function. It means that RNN

has been learnt. After that RNN will recognise learnt patterns and provide the desired

output to any input of the same type. This property was utilised in the image recogni-

tion [20], and effective video compression [21]. Gradient-Descent Learning is used to

train MCRNN to distinguish tumours or abnormal areas in Magnetic Resonance Images.
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MCRNN divides image into regions and evaluates each region by trying to match them

into known patterns. The unrecognised areas are named at the output by MCRNN as

regions with abnormal state. Image and video processing is also important for real-time

streaming network applications. The video compression benefits from RNNs, because neu-

ron network can recognise the movement in the flow of successive snaps or images of the

video stream. In fact, there are two RNNs used for this application, one is called Encoder

RNN and another Decoder RNN. Encoder RNN processes the input blocks from larger

number of neurons into the output blocks that are produced by the less number of neurons.

Thus, the compression is conducted. Moreover, Encoder RNN is capable to recognise the

static blocks of the video stream and decide not to process them and not to send over the

transmission link. The quality of compressed video is increased, because more network

bandwidth and speed is available for useful blocks transmission, as it is not loaded with

redundant information carrying.

The applications of RNNs is not limited with image and video processing. This ran-

dom networks were successfully implemented for solving optimization tasks. Optimization

problems target is always to find the optimum solution for arranging a given set of entities

in the way, so that the ”cost” function is minimised. The RNN showed its consistency for

heuristic algorithms of tasks assignments problem [22], and for graph optimization prob-

lems, like multicast routing [23] and travelling salesman problem [24]. Each neuron of

RNN, implemented for task allocation, represents a task-processor pair, so that the most

excited neuron will be selected imposing the corresponding processor to pick up the task.

The large excitatory weights will exist on the links between frequently communicating

processors. The constraint of the task is the maintaining the right order of the task flow,

that will be controlled by the excitatory and inhibitory weights changing. The graph op-

timization tasks are performed in the form of iterative algorithm that runs on RNN, until

convergence. From iteration to iteration the graph edges will endure inhibitory weights

increase if they do not satisfy to the constraint or have already been picked up for the

solution. The algorithm finishes, when the optimum solution is found.

From optimization tasks description there is a straightforward transition to RNNs

application in networks. RNNs are used to make a routing decisions that suit optimally the
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pre-defined QoS Goal function [10], [25], or to allocate resources in Admission Control

(AC) algorithm [2], or to block malicious packets flows when DDoS attack happens

[5]. For all network applications RNNs reside inside network nodes, so that each neuron

corresponds to the immediate neighbour of the node (server, router). For routing decision

making the network quality metrics, collected by packets, are used to learn RNN, so that

a neuron with most promising direction for goal function is selected. As it was mentioned

before this way RNNs are utilized in CPN protocol [25]. The CPN network protocol is also

implemented for managing AC and DDoS. In AC application of RNN the congestion in the

network is prevented, as a user will not be allowed to send packet over the network, if there

is no path available to it, which satisfies the desired QoS function. If network saturation

is increasing, the number of paths, satisfying less loss, shortest delay or jitter, will be

decreasing. Finally, such paths will be absent, so that additional users will not be allowed

to network, as they anyway will not succeed to get enough quality for their transmission.

In DDoS the analogous to AC approach is implemented, but from the destination side.

Destination server allocates a portion of available resources to a client, before the latter

starts to send data. If a client keeps transmitting rates below the claimed threshold, it will

be safe. In the opposite case, it will be punished, so that destination server will inform all

nodes in the path to block overhead traffic.

Random Neuron Networks is a universal tool for a vast range of applications. RNN’s

main advantage that it could be always described by Chapman-Kolmogorov balance equa-

tions, and if stationary distribution exists, it could be always found as product of neurons

excitation probabilities. Another distinguishing property is learning. RNN can perceive

the relationships between input and output variables by means of the Gradient Descent

Learning and fix them into weights matrices. After learning process completion RNN will

recognise the learnt patterns and produce the desired output. The Reinforcement Learn-

ing is implemented in network applications of RNN and allows to update routing decisions

in the network nodes according to pre-defined QoS. Investigation in the field of extended

RNNs is ongoing with purpose to work out such RNNs that will satisfy more complicated

models.
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1.3 Reinforcement Learning (RL)

It was described in the previous section, how CPN protocol uses RNNs in nodes and the

product-from solution to make routing decisions, but the CPN also implements another

property of RNNs, which helps to approach the desired QoS and is defined as Rein-

forcement Learning (RL). The RL algorithm changes RNN neuron potential by updating

w+(i, j) and w−(i, j) weights, by means of rewards. Rewards are calculated from the

values stored in the MailBoxes, which are updated by SPs(SACKs) and/or DPs(DACKs),

according to pre-defined QoS. Thus, the connection between Reward and QoS ”Goal func-

tion” G could be observed. The above mentioned Reward R is inversely proportional to

the G, and general formula could be defined as follows:

R =
β

G+ ε
(1.11)

where β is chosen from range (0 < β ≤ 1) and ε represents the lower bound for the QoS

Goal value (could be a zero or some small value). When an ACK arrives to the node, it up-

dates MB and triggers the reward recalculation, producing successive Rl value, l = 1, 2, ....

The next step of RL algorithm is threshold update that performed by exponential average,

as follows:

Tl = αTl−1 + (1− α)Rl (1.12)

where α is a smoothing constant and is chosen on condition that 0 < α < 1. The value

of previous threshold Tl−1 is compared with current value of reward Rl for the RNN

weights update. In fact, Rl is previous decision (previously selected neuron) reward, and

Tl−1 is a ”historical value” of reward. If Rl > Tl−1, this case will significantly increase

excitatory weights on links that lead to the previously selected neuron. At the same time

inhibitory weights that lead to all other neurons in RNN will endure small increase. In

case Rl < Tl−1, the previous decision neuron will be punished for not approaching the goal

by significant increase of inhibitory weights going to it. Logically, all remaining neurons

will be rewarded through some increase of excitatory weights leading to them. Thus, the

punished neuron is ”excluded” from the next decision making, but other neurons have
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more chances to be chosen. The weights update is performed as follows:

IF Tl−1 < Rl

w+(i, j)← w+(i, j) +Rl

w−(i, j)← w−(i, j) +
Rl

n− 2
, j 6= l

ELSE

w+(i, j)← w+(i, j) +
Rl

n− 2

w−(i, j)← w−(i, j) +Rl, j 6= l (1.13)

To avoid weights overflowing the values in 1.13 should be re-normalised according to the

forlmulae below:

r∗(i) =
n∑
1

[w+(i, j) + w−(i, j)], i = 1...n

w+(i, j)← w+(i, j)
r(i)

r∗(i)

w−(i, j)← w−(i, j)
r(i)

r∗(i)
(1.14)

In conclusion, this chapter presented the project objective and its main idea. The

further chapters will give the detail understanding how idea was implemented in the CPN

protocol code. The existing CPN background and theory was also provided in the chapter

with purpose to assist the understanding of further chapters. All the abbreviations, which

will be used in the project report, were provided in the chapter.
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Chapter 2

Bilateral Traffic Differentiation

Existing CPN protocol and code realization, described in the previous chapter, is capable

to search for paths that suit required QoS in the best way, track changes in the network

conditions and update paths correspondingly. Nevertheless, there is a limitation that QoS

is fixed and stamped by CPN sender node to any packet originated by it and could not be

changed during transmission. In this chapter the CPN code enhancement is described that

allows to change QoS during transmission depending on traffic volume in each direction

of bilateral transmission. Moreover, one CPN sender node could allocate different QoS

to different users that reside in it, so that packets with two distinct QoS are generated

simultaneously from the same node. The aim of the enhancement is to make CPN network

utilization more efficient, to load all available paths.

2.1 System Model

The bilateral network system model based on CPN is shown in Figure 1.1. It possesses two

distinct QoS Goals for traffic differentiation, rather than the potential four distinct Goals

for the two directional representations. Although the generalisation to four is straight-

forward, in this paper, we choose to limit ourselves to two distinct QoS Goals in order

to simplify the experimental evaluation of the approach that we are proposing. The level

of traffic volume in each branch is taken as a triggering condition between the two QoS

Goals in each of the directions for each of the A and B pairs.

It is common in real life that the TX and RX traffic are asymmetric. An Uplink

Sender could transmit to Downlink Sender much larger amounts of traffic than it receives,
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and vice versa. Each sender should be able to estimate the ratio between its TX transmit

and RX receive traffic levels and make a decision about the QoS for data that it sends.

Obviously, if the sender is able to switch between QoS Identifiers, both QoS paths should

be available to be used by sender. For this purpose the Smart Packets from each sender

would discover each of the two QoS path simultaneously. As a result, each sender would

possess at least two distinct QoS paths at any time and choose between them depending

on the traffic conditions. Regarding the QoS Goals that we have selected, the smaller

traffic level will be assigned the delay as the QoS Goal (QOS DELAY), and the larger

traffic would be allocated loss as the QoS Goal with path tracking (QOS LOSS). For

QOS DELAY, CPN stays unchanged as in previous work: SPs discover paths; update

them by reading timestamp information in Mailboxes, so that the shortest delay path

is always available to the sender. QOS LOSS is more complicated and consists of two

distinct loss estimates: one is for Smart Packets, another for Dumb Packets. SPs’ loss is

used only in the intermediate nodes of CPN - i.e. those that are used in the CPN cloud in

Figure 1.1 in order to discover and evaluate paths. Each intermediate node estimates the

loss of Smart Packets that leave this node heading towards destinations; the RNN in the

node evaluates the success of the node for each destination that the Smart Packets search.

As in CPN, the DPs’ Loss evaluation can only be determined at the sender node (A for a

flow from A to B) since it requires that the number of DACKs returning to the sender be

counted and compared to the number of DPs that have been sent out to that particular

destination. Naturally, when QOS LOSS is used, the loss measurements are being carried

out on the path that is offering the smallest loss rate since that is the path that is being

used. Besides, the QoS decision and the path choice, each sender actually must manage

flow control. When a sender has several destinations, it must distinguish between them

and forward packets while being aware of the distinct flows, as shown in Figure 2.1.

2.2 QoS Decision Logic and Flow Control

The QoS decision logic and the Flow Control scheme, both of which reside in sender nodes,

are described in detail in this section. The Flow Control algorithm provides TX and RX

traffic rate estimation per destination for the QoS decision logic.
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Uplink Sender

15.0.0.1

CPN

Downlink Sender 2

15.0.0.3

Without Flow Control 

(incorrect results for QoS selection per DS)

With Flow Control

(correct results for QoS selection per DS)

Downlink Sender 1

15.0.0.2

TX Branch

RX Branch

Source -> Destination

15.0.0.1 -> 15.0.0.2 (TX)

15.0.0.2 -> 15.0.0.1 (RX)

15.0.0.1 -> 15.0.0.3 (TX)

15.0.0.3 -> 15.0.0.1 (RX)

Rate Pkt Num Time

Flow Control File at Uplink Sender

[User ID]

Figure 2.1: The Flow Control Logic for QoS decision making.

2.2.1 Round-robin for Smart Packets

Before further description about decision making the path discovering technique should be

mentioned. Uplink Server always initialises the path searching algorithm towards Down-

link Sender. DS starts to search for the path towards US only after receiving packets from

US. As there are two QoS in the system, each sender needs to discover paths for every

QoS. When each sender tries to send a SP, it needs to mark it with QoS Identifier. For

simultaneous discovering of paths for each QoS, the round-robin principle is applied for

QoS Identifier selecting. If the previous SP was marked with QoS1, the current one will

be marked with QoS2. After that the cycle will be repeated. Thus, 50% of all SPs will be

travelling with QoS1 and another 50% - with QoS2.
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2.2.2 Flow Control

After obtaining to distinct QoS paths each sender can start DPs transmission. Each sender

sends DPs towards destination; these packets are regarded as Originated Dumb Packets.

At the same time each sender terminates DPs from destination; these packets are called as

Locally Delivered Dumb packets. Only these packets trigger the Flow Control functions.

Thus, the intermediate nodes are not loaded with this logic, as they just pass DPs through.

Flow Control file stores information about both branches (TX and RX) per destination

and has following fields (see Figure 2.1):

• Source→Destination. This field consists of two IP addresses of each branch that a

sender has. TX and RX branches have opposite directions of traffic flow. Thus, local

server address will be put into Source sub-field for TX branch and into Destination

sub-field for all RX branch. Destination Server IP address resides in the Destination

and Source sub-fields respectively. There are two records per destination.

• User ID. The value in the field indicates which user generates RX or TX traffic. If

there are two users sending from the same source two the same destination, there will

be two records TX traffic and two records RX traffic in the bilateral transmission

case. To allow the Flow Control algorithm to distinguish packets by originating

user, a field was added to the DP header that was defined as User ID (see Figure

1.3). The Flow Control logic reads the User ID field and textbfSource, Destination

fields from DPs and DACKs headers and decides which Packets Number fields to

increment in the Flow Control File.

• Rate. The packet rate of the branch is written into this field.

• Packets Number. This field accumulates DPs. Originated DP increments the

Packet Number field of respective TX branch. Locally Delivered DP increments the

Packet Number field of respective RX branch.

• Time. This field tracks the time as the rate is calculated every 2 seconds.

It is obvious from fields’ description that File Control File counts the number of DPs

sent and received in corresponding TX and RX branch per each destination server. Every
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2 seconds the packet rate is calculated and written into the designed field. The Rate

field values are used in the QoS Decision Logic. The Flow Control file update is not

bounded to any QoS. It is launched by any DP not considering the QoS mark in DP’s

header. Nevertheless, the Flow Control Logic differentiates traffic generated from the

node in terms of users who send packets. Each user traffic is tracked separately from

others. Moreover, QoS Decision Logic makes decision about each user QoS independently.

As it was mentioned before users are defined by their unique identifiers. The User IDs

allocation solution in this project was straightforward, IDs were defined by Linux OS users

numbering. Thus, one CPN sender node can generate two distinct traffic flows with two

distinct QoS, if there are two Linux users sending from distinct User Spaces of OS.

2.2.3 QoS Decision Logic

SPs QoS marking was already described and reminds Round-Robin scheduling. DPs QoS

selecting and marking is formed into QoS Decision Logic. It directly depends on the level

of asymmetry of traffic volume between TX and RX branches. Before Originated DPs

sending each server should decide which QoS to select for adding into DP header. The

simple function performs comparing of TX and RX branches rates of destination towards

which packets should be sent. The mentioned rates are retrieved from Flow Control File.

Then the proportion of TX traffic in the Sum Traffic is computed according to formula:

Ratio =
TXRate

TXRate+RXRate
(2.1)

If Ratio is more than 0.6 (it means that TX traffic comprises 60% of overall traffic travelling

between source and destination), the less loss QoS with path tracking will be assigned to

the DPs. The marking DP with QoS means that it will follow all rules defined by the

given QoS: path selection, interacting with MBs in intermediate nodes, files updates and

etc.

2.3 Less Loss QoS with path tracking

Less Loss QoS with path tracking differs from previous QoS formats, because it consists

of two functionally independent loss estimation algorithms. The first algorithm estimates
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SP Loss per destination and runs in intermediate nodes. The second one estimates DP

Loss per path and runs in sender nodes.

2.3.1 Smart Packet Loss QoS in Intermediate Nodes

When SP searches for the path, it can do it randomly or using Reinforcement Learning

(RL). SPs with random search are 5% of all packets sent by sender and SPs with RL are

20%. Random search logic is straightforward. Each intermediate node after receiving a SP

selects the next hop for it among his available neighbours randomly. In RL intermediate

node uses Random Neural Network (RNN) [12]. For Delay QoS RNN is created in each

node following the previous versions of CPN. There is a distinct RNN per combination of

Source Address, Destination Address and QoS Identifier. For SP Loss QoS in intermediate

nodes RNN is created per combination of Destination Address and QoS Identifier and

shows the success of the node in path searching. Nevertheless, the structure and logic of

RNN should remain the same. To achieve it, the Source Address was assigned with Zero

IP Address (0.0.0.0). Thus, the anchoring of RNN to the source address was eliminated.

Analogous changes were introduced in MB format from which RNN takes values

for neuron weights update. Each entry in the MB is created per destination address and

QoS ID (head of the MB), and there are all neurons listed under each entry. Each neuron

entry has the following fields (see Figure 2.2):

• Neuron Address: This field contains the IP Address of the neuron.

• SPKTs: This field accumulates the number of SPs that travel through this neuron

towards destination from the MB head.

• SACKs: This field accumulates the number of SACKs that travel through this

neuron from destination from the MB head.

To prevent the overflow in counter fields, after every 15 sec SPKTs and SACKs fields

are set to zero. This also grants the memoryless property to the system - the estimation

does not count the previous loss towards destination that no longer exists.

The fields that count SPs and SACKs are incremented when a packet of respec-

tive type travels through the node. The neuron address to which SP is routed or from
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Zero Addr   Dest Addr                        [QoS ID] 

Neuron (0) Addr SPKTs SACKs 

Neuron (1) Addr SPKTs SACKs 

… … … 

Neuron (N-1) Addr SPKTs SACKs 
 

Figure 2.2: Mailbox Format for SP Loss QoS in intermediate nodes

which SACK has arrived defines exact SPKTs or SACKs field that should be incremented.

Rewards for RNN are calculated from these fields according to the following formulae:

LossSP =
SPKTs− SACKs

SPKTs
(2.2)

Reward =
β

LossSP + ε
(2.3)

The parameters in ( 2.3) have the following values: β = 0.5, ε = 0.0001.

2.3.2 Dumb Packet Loss with path tracking in Sender Nodes

When a sender receives a SACK packet, it means that a new path with the less loss of

SPs is available. At the sender side it is more important to have a path with the less loss

of DPs. Paths should be tracked for DP Loss, but in the current CPN implementation

Dumb Packets Route Register (DPRR) is always overwritten with every SACK packet

that arrives. For purpose of tracking path storage file was designed. Each entry in this

file stores one path and has the following fields:

• Destination Address: This field contains the IP Address of destination towards

which a path was found.

• Active: This field shows whether the path is active now. Path is active when DPs

are sent over it. If path is marked as ”active” in this file, it means that the same

path is stored now in DPRR. The field has two possible values”0” - for inactive paths

and ”1” - for active path.

• DPKTs: This field accumulates the number of DPs sent over the given path towards
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destination from previous field.

• DACKs: This field accumulates the number of DACKs sent over the given path

towards destination.

• Path ID: This field contains the unique identifier of the path. It helps easily and fast

to identify the path through which a DP was sent or a DACK was received. When

DP is created by a sender it is marked with the Path ID. The corresponding DPKTs

field of the selected path is incremented. For purpose of marking the additional

field was introduced into the packet header and called Route ID. Upon DACK

packet receiving sender reads this field and defines the DACKs field of which path

to increment. To prevent the overflow in counter fields after every 180 000 DPs

sent over a path, DPKTs and DACKs fields are set to zero. This also grants the

memoryless property to the system - the estimation does not count the previous loss

in the path that no longer exists.

• Path: There is the whole path stored in the field. It is used when a new discovered

path is checked for uniqueness.

The algorithm with path tracking works as follows:

1. When DPRR and Path Control File are empty, any discovered path is written di-

rectly into DPRR and Path Control File and becomes ”active” in the latter one.

DPs starts to use path immediately and starts to increment the counters.

2. When a new path is brought by SACK it should be checked for uniqueness. If there is

no completely the same path in the Path Control File it will be immediately written

into DPRR and Path Control File and becomes ”active” in the latter one. It was

designed this way with purpose to test new discovered paths for DP Loss. If brought

path is not genuine, it triggers the algorithm of selecting the path with less DP Loss.

3. If path is not genuine, there are already some values in DPKTs and DACKs fields

for this path in the Path Control File. The DP Loss of this path that was brought

by the latest SACK could be calculated. At the same time the DP Loss of the

current ”active” path should be computed to be compared with new path loss. After
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comparing the less loss path is selected for being written into DPRR and to become

”active” in the Path Control File. The DP Loss is calculated as follows:

LossDP =
DPKTs−DACKs

DPKTs
(2.4)

4. It could be a case when two compared paths are the same. It means that algorithm

has reached a convergence for some period of time, so that the less SP Loss path

and less DP Loss path are equal.

In conclusion, this chapter provides information about programming updates and

enhancements introduced to the existing CPN code with purpose to increase the efficiency

of CPN network utilization. The introduced features are Round-Robin for SPs for two

distinct QoS simultaneous path discovery, users traffic differentiation, the Flow Control

Logic for user’s TX and RX traffic volume asymmetry tracking, the QoS Decision Logic,

Less Loss QoS with path tracking. In the next chapter, the updated CPN code was checked

for performance by means of experiments.
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Chapter 3

Experiments and Results

This section presents the experiments description that were performed on the enhanced

CPN network and results of these experiments with analysis.

3.1 The CPN testbed and Tests Scenarios

The CPN code was implemented and run on Pentium server machines with Linux Ubuntu

operating system installed on them. The kernel version was 2.6. The CPN testbed net-

work configuration is given in Figure 3.1. All links between nodes are 100 Mbps Ethernet

links (12.5 MBps). Experiments were divided into two groups. The first group of experi-

ments was designed for one user case per node, with two CPN nodes involved in bilateral

transmission link. The aims of the first group tests were:

1. To confirm that the program code is working as designed in the scope of capability

to allocate QOS LOSS to larger traffic direction, to discover and track all available

paths.

2. To evaluate the DP Loss vs Traffic Rate.

3. To evaluate the percentage of paths usage for Uplink Branch by QOS LOSS traffic.

The main idea of the second group of experiments was to simulate four QoS case. There

were two distinct users per node with two CPN nodes involved into bilateral transmission

link. Four users were organized in pairs, so that each user in each sender node communi-

cates with only one user in another sender. Each node possessed both QoS algorithms of

path discovery and users could select the QoS depending on the traffic conditions. The test
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was designed with purpose that two users in one sender node are allocated with different

QoS. The aims of the test were:

1. To confirm that the program code is working as designed in the scope of capability

to treat each user’s traffic independently from other users in the same sender node.

2. To evaluate ability of the algorithm to exploit users diversity for efficient CPN net-

work resources utilization.

3. To measure the percentage of time when two distinct QoS algorithms select simul-

taneously the same path for DPs transmission from each sender perspective.

4. To measure and evaluate the number of distinct simultaneous paths in the network.

5. To evaluate and compare the percentage of paths usage by each sender node.

6. To evaluate and compare the percentage of paths usage by each QoS.

7. To evaluate the percentage of paths usage by whole CPN network.

Uplink Sender

026 015

030

009 014

016

010 002

112

106

109

Downlink Sender

Figure 3.1: The CPN testbed used in the experiments

All experiments were run for variety of traffic rates. As tests for every rate were

run separately from others, Path IDs, tracked by Path Control File, could not match. It
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could not be predicted which path would be discovered first and would get the smallest

index. To be able to compare paths for different rates and experiments, the unification

was needed so that the Path Legend was designed (Table 3.1). The path enumeration

from the Legend was used and for plots and graphs creation to make process of comparison

and analysis possible.

Path ID Route Length

0 026 015 009 014 010 002 Short

1 026 015 030 014 010 002 Short

2 026 015 030 016 010 002 Short

3 026 015 009 014 016 010 002 Medium

4 026 015 030 014 016 010 002 Medium

5 026 015 030 016 014 010 002 Medium

6 026 015 009 014 030 016 010 002 Long

Table 3.1: Paths Legend

The Matlab programming environment was used to interpret experimental results.

The programmed scripts performed files and logs parsing and automatic calculation of loss

and paths usage. Plots and bar diagrams were also produced by Matlab scripts. Using of

Matlab programmed scripts allowed to collect enough experimental data.

3.2 Experiments with One User per Sender

During this block of experiments traffic was generated from Uplink Sender 026 towards

Downlink Sender 002. Traffic from US was much larger then from DS and varied. There

were two tests scenario. In the first scenario traffic was generated in the range 100 -

1000 pps (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000) with packet size 1024 bytes (1

Kbyte). Due to the rates involved this scenario was regarded as Low Traffic scenario. In the

second scenario traffic was generated in the range 1000 - 12500 pps (1000, 2500, 5000, 7500,

10000, 12500) with packet size 1024 bytes. Naturally, this scenario was named Large Traffic

Scenario. Preliminary test running showed that real packet rate upper-bound was 10750

pps that corresponds to the 10.75 MBps rate, and it did not increase even though 12500 pps

rate was generated. Thus, the CPN protocol overhead is (1−10750/12500) = 0.14 = 14%.

Nevertheless, the DP Loss for pre-defined 12500 pps rate was observed to be larger than for
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pre-defined 10750 pps. According to this DP Loss plots and Paths Usage plots maximum

rate value was left equal 12500 pps, even though sender node was, in fact, sending packet

at the 10750 pps rate.

The experiments show that CPN code managed to discover all seven available paths

during each test run and to perform path loss tracking. The results of the experiments

are represented in plots of DP Loss vs Rate and Percentage of each path usage vs Rate.

Results were collected into the log that was recording the selected Path ID and Path

Loss, after a decision about path was made by Less DP Loss Logic with Path Tracking.

Naturally, for higher rate there was a larger number of decisions during the time of test

duration. The resulting figures are averaged over all number of decisions, occurred during

the test run.

3.2.1 Low traffic One User Scenario Results

Duration of one Low Traffic scenario run was 3 minutes. The scenario was run 5 times

for every rate. Results are given in Figure 3.2 and 3.3. In the Figure 3.2 the plot of

Loss Percentage for rates 700, 800, 900 and 1000 is given. For rates less than 700 pps

the nodes were not saturated and DP loss was always zero. The saturation is assumed to

begin slowly from rate 700 pps ( = 0.7 MBps). The Less DP Loss Logic with path tracking

sometimes introduces some error while estimating DP Loss for path. It could count DACK

as lost, when it is just delayed. Nevertheless, if DACKs start to endure delays, it means

that path saturation is increasing, and it is smarter and better to switch to the path with

less or even zero loss. The DP Loss approximation has some error, but it does not affect

the right way of the algorithm functioning. Moreover, the DP Loss results approximated

by path tracking code were compared with the statistical data of exact number of lost

DACKs. The approximation is very close to the real loss numbers.

The percentage of path usage given in Figure 3.3. The most used paths at all rates

after the results analysing are Path 0 and Path 2. Path 0 is the most used with 40% on

average for rates from 700 to 1000 pps, Path 2 is the second with 25% of average usage.

The high usage of these paths could be easily explained that they are the shortest paths.

Nevertheless, there are three shortest paths of equal length (Path 0, Path 1, Path 2),

and the Path 1 usage is very low, about 3% on average. The Path 4 usage does not
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Figure 3.2: The Loss percentage plot for Low Traffic Test scenario.

supersede Path 1 significantly, approximately 4%, even though it is a medium length

path. It is remarkably that there is the longest length Path 6 among three paths, which

share third place in usage percentage with 10% on average. The presence of medium

length paths, Path 3 and Path 5, is logical, but Path 6 shows an outstanding performance

in approaching QOS LOSS goals.
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Figure 3.3: The percentage of path usage for Low Traffic Test scenario

To conclude, the system is obviously is not overloaded according to the test results.

There is a stable and low percentage of DP loss. From the path usage results it could

be summarised that the best performance was showed by Path 0. The longest length
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Path 6 occasionally was as good as paths with medium length, like Path 3 and Path 5.

The less used paths are Path 1 and Path 4. The Low Traffic test showed that the code

is working and fulfils its tasks. Nevertheless, the network load was too low and could be

not representative for QOS LOSS performance and paths usage distribution. The Large

Traffic scenario was designed and run with purpose to clarify trends.

3.2.2 Large traffic One User Scenario Results

The Large Traffic experiments were organized as in the previous scenario. One test run

duration was 3 minutes, and there were 5 runs for every rate. Results are given in Figure

3.4 and 3.5. The upward trend of Loss percentage in Figure 3.4 shows that during the

test system was saturated. The level of saturation increased with packet rate. The trend

rockets after 2000 pps rate, but DP loss is about 0.01% until rate 8000 pps. For 12500 (12.5

Mbps) rate DP Loss is equal 0.25%. The DP Loss percentage could be regarded to be low,

but it should not be forgotten that the network is small with large interfaces bandwidth.

The another option is that it is the effect of DP Less Loss Logic functioning. In fact, the

most important thing is the trend behaviour. The DP Loss increase is significant for high

packet rates, comparing to the lower rates.
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Figure 3.4: The Loss percentage plot for Large Traffic Test scenario

The path usage plot is given in Figure 3.5. The results highlight the inconsistency

of estimating best path only by the shortest length for distinct QoS Goals. The best
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performance paths are Path 0 with 40% usage and Path 2 with 25% that are the shortest

paths. Path 6 is at the third place with approximately 13% usage on average. The Path 6

in this experiment excel medium length paths, Path 3 and Path 5 with 10% of usage. The

usage percentage of Path 1 and Path 4 is almost equally low with 2-3%. Nevertheless, for

rates over 8000 pps the trends stops being flat. The less used paths trends go upwards,

and the usage percentage of popular paths starts to decrease. It could be explained that

at high packet rates saturation introduces a large congestion, so that algorithm seeks for

the unused resources to maintain the performance.
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Figure 3.5: The Loss percentage plot for Large Traffic Test scenario

To conclude, the Large Traffic test scenario confirmed the rankings of DP Less Loss

paths with Path 0 at the first place, Path 2 - at the second, and Path 6 has eventually

managed to supersede shorter length paths and to get the third place. Path 1 and Path 4

continued to be the less used paths, but at the high rates the usage these paths started

to increase. In the high load condition the algorithm tries to use all available resources

effectively. It took part of the load from the most used paths and allocated it to the less

used paths to decrease the congestion and DPs Loss. The values of DP Loss shows that

the algorithm manages to maintain very low loss packets by smart paths selection.
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3.3 Experiments with Two Users per Sender

This group of experiments uses two users pairs from the previous experiment to simulate

the four QoS transmission network. Two distinct users resided in the cpn026 node and

two distinct users - in the con002 node. There is a scheme of the experiment, given in

the Figure 3.6. The Linux OS User spaces were utilised to generate two distinct flows

from each CPN sender node. The first user was root with User ID 0 and the second user

was cpn with User ID 1000. The users were organised in pairs. The first pair: user cpn

(1000) in cpn026 was sending large rate Uplink traffic to user root (0) in the cpn002, the

latter responded back with low rate Downlink traffic. The second pair: user cpn (1000)

in cpn002 was sending large rate Uplink traffic to user root (0) in the cpn026, the latter

responded back with low rate Downlink traffic. Referring to the section of QoS Decision

Logic, the CPN code in each node would allocate different QoS to its Uplink and Downlink

branches that it maintain. In other words, each user in every node would be assigned with

different QoS from another user in the same node.

026 002

cpn

root cpn

root

Downlink cpn026 – QOS_DELAY

Downlink cpn002 – QOS_DELAY

Uplink cpn026 – QOS_LOSS

Uplink cpn002 – QOS_LOSS

CPN Testbed

Figure 3.6: The test scheme for 4 QoS Simulation (two users per sender node)

To be able to see the effect of QOS LOSS functioning, the rates range was chosen

to be from 1000 to 10000 pps (1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,

10000). The rate values were assigned to be equal at each sender node. If cpn generates
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1000 pps traffic from cpn026 node, then cpn user in the cpn002 also generates 1000 pps.

Thus, traffic rate that travel through CPN network was twice the traffic rate, generated

by one cpn user. The root user’s traffic was not larger than 100 pps. The test outline

was organized into test runs of 3 minutes duration with 5 independent runs for each rate.

Upon tests completion results were averaged for each rate. The results were collected as

reading DPRR file, which stores two active paths for every QoS, and copying it contest to

the output text file every second. Then text files were parsed by Matlab scripts and the

plots were created.

3.3.1 The same path usage results

In this subsection the percentage of time of the simultaneous same path usage by two

distinct QoS, as it is seen from each sender node, are provided. The plots are given in the

Figure 3.7 and Figure 3.8. The percentage of time, when the same path is simultaneously

selected by QOS DELAY and QOS LOSS at the cpn002 sender, varies in the range 16 -

25%, so that ≈ 80% of time DPs from cpn002 travel different paths. The percentage of

time, when the same path is simultaneously selected by QOS DELAY and QOS LOSS at

the cpn026 sender, varies in the range 15 - 21%, so that again ≈ 80% of time DPs from

cpn002 travel different paths. For all rates range CPN code algorithms manage to maintain

different path usage percentage almost at the same 80% level, as the trends fluctuations

for both senders are small, ± 4.5% around average of 20.5% for cpn002 and ± 3% around

average of 18% for cpn026.

To sum up, the experiment results show the effectiveness of enhanced CPN code

in the bilateral traffic differentiation. Each CPN sender manages Uplink and Downlink

independently be means of two distinct QoS, allocated to each branch. In the 80% of time

cpn user DPs and root user DPs from each sender travel different paths.

3.3.2 The evaluation of distinct paths number in the CPN network

The previous subsection results analysis showed that in ≈ 80% of time DPs with different

QoS, generated by one sender, travel different paths. The maximum number of simulta-

neous paths in the CPN network is upper-bounded by number of traffic flows and equal to

4. This subsection test results present the percentage of time, when there are N distinct
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Figure 3.7: The percentage of time two distinct QoS algorithms select the same path
for DP transmission from cpn002

simultaneous paths in the network. Variable N is defined in the range from 1 to 4. When

N is 1, it means, that all four users have selected the same path for DPs sending. Even

though the DPs travel in the opposite directions, they can utilise the same path. When

N is 2, there are two possible cases. Two users have selected the same path (one from

cpn002, another from cpn026 or both users from one of the sender) and remaining two

users selected the same path, but different from the previous two users’ path. Another

case is when three users have selected the same path and one user - different path. When

N is 3, it means that three users has selected three different paths, but path, selected by

forth user’s, coincide with one of three users. Finally, the ideal case is when all four users

have chosen distinct paths. The bar diagram of percentage of time, when there are N

distinct simultaneous paths in the Network, is given in Figure 3.9. The diagram shows

that the enhanced CPN protocol has a stable performance for all rates. The most frequent

number of paths in the CPN network for all rates is 3, in more than 50% of time. The

percentage of time for 2 and 4 paths varies with rates, but it is remarkable that in ≈ 70%

of time on average there are more than 3 paths in the network (3 or 4). The presence of

only one path is enormously rare, and does not occur more than in 1-2% of time.

The probability distribution function of simultaneous distinct paths in the network

is given in the Figure 3.10. The histogram represents the distribution, obtained from
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Figure 3.8: The percentage of time two distinct QoS algorithms select the same path
for DP transmission from cpn026

empirical data, and plot shows the theoretical approximation. The empirical distribution is

very close to the normal distribution with mathematical expectation equal 3 and standard

deviation equal 0.75. There are 3 paths in the network in 52% of time, 2 or 4 paths - in

22% of time, and only 1% of time there is one path.

In conclusion to the presented results, the enhanced CPN code manages to archive

target of efficient CPN network resources utilization through bilateral traffic differentia-

tion. The tests showed that at least 70% of time there will be 3 or more distinct simul-

taneous paths in the network. The percentage of the worst case, when there is only one

path, chosen simultaneously by four users, is almost negligible and equal 1%.

3.3.3 The Paths Usage in the 4 QoS simulation

This subsection describes experiments results of paths usage percentage. The experiment

outline allowed to represent paths usage in three scopes. First, the Figure 3.11 and 3.12

provide the plots of the most selected paths as it seen from each CPN sender node. It

means that the paths usage was evaluated form each sender node, not considering the QoS

that were selecting the paths.

The paths usage results for cpn002 are given in Figure 3.11.The cpn002 node

prefers, as expected, Path 0 with usage percentage of 40% on average, until saturation

begins at 7500 pps that decreases the Path 0 usage till 27-30%. The second place of usage
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Figure 3.9: The percentage of time of N simultaneous paths in the CPN network vs
Rate

is divided by two other shortest paths Path 1 and Path 2 with average about 17%. The

Path 1 performance is stable, as the plot is flat, but the usage of Path 2 increases with

saturation raising and becomes equal to Path 0 at the rate 10000 pps. The Path 6 is used

more often then shorter length paths, it shares the third place of usage with Path 5 that is

used on average in 7-8% of time. The less used paths are medium length paths Path 3 and

Path 4 with ≈ 4% of average usage, but their performance is improved with rate increase.

After 9000 pps the less used paths are at the same level as Path 6 and Path 3.

The paths usage ranking from cpn026 has a different outline. The Path 0 is no more

an absolute leader, it shares the first place with Path 2, both having 27-28% of average

usage (see Figure 3.12). The four paths with variety of lengths are used on average in

≈ 10% of time, they are short length Path 1, medium length Path 3 and Path 5 and the

longest Path 6. The saturation introduces some ordering among these paths at rates after

8000 pps, as follows: Path 3, Path 1, Path 6 and Path 5, but it does not significantly

change the values of usage. The Path 4 is less used path with 4% of average usage.

The comparison of paths usage percentage from each CPN sender node shows that

the most popular path is Path 0. Nevertheless, Path 0 and Path 2 are used at the same

level, but another short length Path 1 is used 3 times less. The cpn002 node makes Path 0

absolute leader, by using Path 1 and Path 2 at the same level, but ≈ 2 times less than

Path 0. Other paths are used by both nodes almost equally. The remarkable performance
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Figure 3.10: The PDF of N simultaneous paths in the CPN network

is shown by Path 6 again, as it never at the last place in usage. The last place are always

occupied by Path 4. The saturation does not introduce a lot of changes into paths usage

rankings of cpn026, but it does for cpn002. For the latter at the high rates Path 0 and

Path 2 usage becomes equal.

For the second scope the Figure 3.13 and Figure 3.14 provide the plots of the most

selected paths as it seen by each QoS. It means that the paths usage was evaluated for

each QoS, not considering from which CPN sender packets were originated. The opposite

direction paths were regarded as the same path, if packets in one direction travel through

the same nodes as in the opposite direction.

The paths usage plots for QOS DELAY are given in Figure 3.13. The Path 0 is the

most used path with 30% of average usage, the second place occasionally goes to Path 1

with ≈ 23% average usage until saturation, the Path 2 is at the third place with 17%.

The fourth place of usage is shared by all remaining paths, each path usage varies form

rate to rate independently from others, but it does not go out of range 5-10%. The Path 4

is also among these paths, it is no more a less used path in QOS DELAY results. The

saturation influences the rankings by allocating DPs almost equally to Path 1 and Path 2,

so that each of them is used in 16-17% of time at rate 10000 pps. At the same rate Path 3

improves its performance, and its usage increases from 7-8% twice, up to 14%.

The paths usage plots for QOS LOSS are given in Figure 3.14. The Path 0 is
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Figure 3.11: The percentage of Paths Usage by cpn002
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Figure 3.12: The percentage of Paths Usage by cpn026

preferred by QOS LOSS and selected on average in the 40% of cases. The second most

used path is Path 2 with 25% of average usage. The medium Path 5 and longest Path 6

share the third place, as they are used on average in 10%. The short Path 1 and medium

Path 3 show a little bit worse performance with 5%. The Path 4 is almost completely

unused by QOS LOSS. The usage percentage at all rates almost zero, so that Path 4

could be named a worst path in approaching DP Less Loss Goal. The high rates over

8000 pps bring changes into paths usage. Usage of the Path 0 decreases, at the same time

Path 2 usage increases, so that their usage become equal at average 35% per path. The

Path 6 and Path 5 group interchanges in position with the Path 1 and Path 3 group. The



40 CHAPTER 3. EXPERIMENTS AND RESULTS

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

Rate (pps), Packet size 1 MByte

P
a

th
s
 U

s
a
g

e
 b

y
 Q

o
S

 (
%

)

 

 

Path 0

Path 1

Path 2

Path 3

Path 4

Path 5

Path 6

Figure 3.13: The percentage of Paths Usage by QoS DELAY

first group has 5% of usage per path at 10000 pps rate, the second group has 10% per

path.

The QOS DELAY and QOS LOSS have showed different preferences in the paths

selection and usage frequency. Two most used paths Path 0 and Path 2 are equal for

both QoS, but the Path 1 is preferred by QOS DELAY more, than by QOS LOSS. Thus,

QOS DELAY uses three shortest paths to balance traffic, QOS LOSS appreciates only two

of them Path 0 and Path 2. The usage of remaining paths by each QoS is approximately

at the same level, except Path 4. The QOS LOSS tried to exclude Path 4 from its DP

transmission, when QOS DELAY uses it on average in 10% of time. The longest Path 6

is also used by each QoS, confirming the fact that the path length is not the main factor

in approaching distinct QoS Goals.

Comparing two scopes, paths usage by CPN sender and paths usage by QoS, it

could be noticed that cpn002 behaves according to QOS DELAY and cpn026 tries to fol-

low QOS LOSS behaviour. Of course, this statement means that CPN nodes behaviour

just reminds the behaviour of QoS, but analogy is indicated by Path 1 usage. The cpn002

node and QOS DELAY used it quite often, at the same time the cpn026 and QOS LOSS

appreciate Path 0 and Path 2 and balance most of the traffic between those two. Never-

theless, the cpn002 gives 40% of average usage to Path 0, like QOS LOSS, and the cpn026

selects Path 0 is on average in 30% of time, like QOS LOSS.
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Figure 3.14: The percentage of Paths Usage by QoS LOSS

In the third scope, the Figure 3.15 provide the plots of the most selected paths

in the whole CPN network. The combination of paths preferences from two sender nodes

and two QoS are presented here. The Path 0 has average usage of 35% until 8000 pps rate

and, as expected, the most used path in the CPN network. The average usage of 22% has

Path 2, and it is at the second place. The third most used path is Path 1 with on average

15%. The forth place is shared by Path 6, Path 5 and Path 3, each of these paths has

average usage in the range 8-10%. The less used path is Path 4 with average usage of 4%.

The high rates make the Path 0 usage to decrease and Path 2 to increase, so that there is

≈ 28% of usage per path for rates over 8000 pps. The Path 1 usage plot is flat, and high

rates does not change it much. The Path 3 usage increases at high rates, with 12% usage

at 10000 pps rate.

The CPN network paths usage plots show that all paths are loaded with some

portion of overall traffic. Even though Path 4 is not selected by QOS LOSS, QOS DELAY

does not ignore it by using it in ≈ 8%, so that the resulting usage in the Network is about

4%. The Path 1 is selected by cpn002 in 20% of time and shares a second place of usage

with Path 2 in cpn002 results, but cpn026 uses Path 1 only in 10% of time. It is not

surprising that the Path 1 in the Network is used on average 15% of time and has got the

third place.

In conclusion, the experimental results in this section showed that QOS LOSS,
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Figure 3.15: The percentage of Paths Usage in the tested CPN network

which is SP Loss QoS in the intermediate nodes and DP Loss QoS with path tracking,

manages to maintain DP Loss below 1% for high packet rates, close to the interface

bandwidth. The results also proved the effectiveness of the Bilateral traffic differentiation

algorithms of the CPN protocol. The four QoS simulation experiment showed that there

are 3 or 4 distinct simultaneous paths in the Network in 70% of time. The percentage

of time, there is one path for four traffic flows in the Network, is only about 1%. The

paths usage plots revealed that the top used paths are the short length paths - Path 0,

Path 2 and Path 3. Nevertheless, the longest length Path 6 has never been the less used

path and shared the places of usage with medium length paths. QOS LOSS selects the

Path 6 as often as short length Path 1. The paths usage also showed that QOS LOSS

and QOS DELAY selection processes and logics differ from each other, allowing to utilize

CPN network resources in the smart way.
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Chapter 4

Conclusions and Future work

This project introduced the idea of Bilateral Traffic Differentiation to the CPN protocol.

If Uplink differ significantly in volume from Downlink traffic, each branch could be treated

by CPN network in specifically way by means of two distinct QoS. Two QoS used were

QOS DELAY, it Goal is the shortest delay for packets travelling, and QOS LOSS, it Goal

is the less loss of DPs. The existing CPN protocol code was enhanced with several features

to implement the main idea. The Round-Robin principle helps SPs to discover both QoS

paths simultaneously, as 50% of SPs are sent with QOS DELAY and as 50% of SPs are

sent with QOS LOSS. The Flow Control File was designed to track the rates of sent

and received traffic, so that the Uplink and Downlink volumes could be compared. The

two branches comparison is performed by QoS Decision Logic, the larger traffic branch

is assigned with QOS LOSS, smaller traffic branch - with QOS DELAY. The QOS LOSS

itself consists of SP Loss algorithm, which resides in intermediate nodes, and DP Loss

with paths tracking that resides in the sender nodes.

Experiments with two users, one user per sender node, showed the effectiveness of

DP Loss algorithm with paths tracking. The 7 available paths are tracked by this logic

and the less DP Loss path is always selected. Thus, the CPN Network saturation did not

introduce a lot of degradation to the DP Loss performance, the overall DP Loss was less

than 1% for rate equal to the interface bandwidth.

Experiments with four users, two users per node, proved the effectiveness of the

Bilateral Traffic Differentiation. The test scenario was designed, so that each user in one

sender had a distinct QoS for packets transmission from another user in the same sender.
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The ideal case for effective CPN network resources utilisation was four simultaneous dis-

tinct paths, one path for each user. The results for all rates showed that in more than

70% of time there are at not less than three (3 or 4) distinct paths in the CPN Network.

The worst case, which is only one path used by all four users simultaneously, occurred

only in 1% of time. The paths usage percentage confirmed that short length paths are

preferable by both QoS. Nevertheless, the longest path was used as frequent as medium

length paths. Moreover, the longest path had never been the last in the usage percentage

ranking. The less used path turned out to be a medium length path.

The future work on the idea, introduced and investigated in this project, could be

experiments running on the larger CPN Network with larger number of available paths. It

is expected that the performance of DP Loss algorithm for high rates would be improved.

The network interfaces bandwidths could be changed, so that the variety of interfaces

speeds is present in the network. In such tests the short length paths could be no more

leaders in the paths usage. More sender nodes could be introduced to the tests with two

users per node. The number of distinct simultaneous paths could be evaluated and ex-

pected to increase, so that the CPN network utilisation efficiency would be also increased.
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