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ABSTRACT 
This paper considers a probability model for travel of a 
packet from a source node to a destination node in a large 
non-homogeneous multiple hop network with unreliable rout
ing tables. Use of a random model is justified by the lack 
of precise information that can be used in each step of the 
packet’s travel, and randomness can also be useful in ex
ploring alternate paths when a long sequence of hops has 
not resulted in the packet’s arrival to the destination. The 
packet’s travel may also be impeded if certain routers on its 
path prove to be unreliable, or the packet may be dropped 
from a buffer or destroyed due to packet loss. The packet 
also has a limited time-out that allows the source to re
transmit a dropped or lost packet. Because the network 
itself may be extremely large, we consider packet travel in 
an infinite random non-homogeneous medium, with events 
that may interrupt, destroy or stop the packet from moving 
towards its destination. We derive a numerical-analytical 
solution allowing us to compute the average travel time of 
the packet from source to destination, as well as to estimate 
its energy consumption. Two interesting applications are 
then presented. In the first one a wireless network where ar
eas which are remote from the source and destination nodes 
may have poor wireless coverage so that the packet losses 
become more frequent as the packet “unknowingly” (due to 
poor routing tables for instance) meanders away from the 
source and destination node. The second application is re
lated to defending a destination node against attacks that 
take the form of packets that carry a virus or a worm that 
can be detected via deep packet inspection at intermediate 
nodes, and as the packet approaches the destination node it 
is more frequently inspected and dropped if it is a threat. 
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1. INTRODUCTION 
Search for recognisable objects in large random or impre

cisely known environments has been studied in robotics, bi
ology, physics, transportation and communication networks 
[12, 22, 21, 18, 19]. This paper focuses on the travel of 
a packet from a given source to a destination which is at 
distance D from the packet, but whose whereabouts are un
known, or imprecisely known. Thus the packet may not have 
precise information about which direction it should pursue 
as it moves from one hop to the next [14, 8, 10], and we sup
pose that the destination node is recognised only when the 
packet gets close to it, typically one hop away. Furthermore, 
when the network is infinitely large the packet may become 
lost in remote areas. The packet can also be destroyed by 
its own finite life-time, by a failure or error in the communi
cation system or by buffer overflow in an intermediate node. 

Random walk models for networks were analysed in [20], 
and in [15] the mean and variance of the hitting time were 
obtained for a torus-lattice network graph when the next 
node visited is selected at random among all neighbours, 
showing that in such networks the probability distribution 
of packet delivery time is approximately geometrically dis
tributed. For multiple independent unbiased random walks 
on a connected network [23] it was shown that the mean 
first passage time converges to the shortest path between 
the source and the destination as the number of travellers 
approaches infinity. A random walk over a wireless network 
with uniform node distribution and circular symmetry was 
evaluated in [1]. In [4], the probability of the unbiased trav
eller visiting a particular node in a given step was derived 
for a 2-D grid topology, but unbiased routing was shown 
to achieve poor performance [2] because the random walker 
may “orbit” around the target node for a long time before 
attaining it. 

In [9] it was shown that the time it takes a packet to travel 
from a source node to a destination node in an infinitely 
large and unreliable network is finite on average, provided 



that a time-out mechanism is inserted to destroy the ongo
ing packet after a predetermined time, and replace it with a 
new packet that starts at the same source and proceeds at 
random and independently of its predecessor. Since the net
work is infinite, the time-out also protects the packet from 
spending an unreasonably long time in remote areas from 
which it may never return. By using a randomly different 
travel path, the new packet takes a distinct path from its 
previous incarnation, increasing its chances of reaching the 
destination. 
The use of Brownian motion approximations simplifies the 

analysis for very large networks, and the time dependent so
lution for the passage time using Brownian motion was con
sidered in [3] where, differently from our work, losses and 
retransmissions occur at specific distances from the desti
nation. In [11] N packets are simultaneously, but indepen
dently, sent out in the quest for the same destination node. 
Both the total travel time and the energy expended were 
obtained using a Brownian motion model of the travel pro
cess. 
While most previous work has dwelt on a spatially homo

geneous network, here we will consider a packet travelling in 
a non-homogeneous multi-hop network. One motivation for 
this work is the case where some parts of the network may be 
particularly faulty or degraded while the rest of the network 
is operating properly. Thus the network’s operational qual
ity may be quite good close to the source node, but it may 
become less reliable when the packet moves far away from 
it. This paper is motivated by two interesting applications. 
The first case relates to a wireless network where remote 
areas, away from where the source and destination nodes 
are located, perhaps have poor wireless coverage so that the 
packet losses become more frequent as the packet “unknow
ingly” (due to poor routing tables for instance) meanders 
away from the source and destination node. The second one 
is related to defending a destination node against attacks 
that take the form of packets that may carry a virus or a 
worm that can be detected via deep packet inspection at 
some intermediate nodes. Thus as a packet approaches the 
destination node it may be inspected by intermediate pro
tecting nodes and dropped if it is viewed as a threat; however 
the source of the packet will use a time-out to attempt send
ing the attacking packet forward again and it is interesting to 
see whether the attacker will eventually be successful. An
other example of non-homogeneous wireless network occurs 
when the packet progresses faster as it approaches the desti
nation, for instance when directional information such as a 
radio signature becomes stronger as the packet approaches 
the destination node. However we will not examine this case 
in detail in this paper. 
In the sequel we will model a packet’s motion towards 

a destination node in an infinite random non-homogeneous 
network, with packet drops that will stop the packet’s progress 
resulting in a subsequent time-out retransmission of the packet 
from the source. We obtain an exact expression for the av
erage time and energy that it takes the packet to eventu
ally find the destination node, based on a non-homogeneous 
Brownian motion model enhanced with some useful point 
processes representing the relaunch of an aborted or inter
rupted search. We develop an analytical solution technique 
based on a finite but unbounded number of internally homo
geneous segments, yielding the average travel time and the 

energy expended. Then the results are applied to the two 
cases of interest that we have outlined. 

2.	 AN ANALYTICAL MODEL FOR NON
HOMOGENEOUS PACKET TRAVEL 

Following the approach in [11] let Yt be the packet’s dis
tance from the destination node at time t ≥ 0. Clearly the 
packet starts at distance Y0 = D and the travel process ends 
at some time T defined by: 

T = inf{t : Yt = 0} 

The random variable s(t) represents the state of the packet 
at time t ≥ 0 where s(t) ∈ {S, W, P, ...}, and s(t) is in: 

•	 S: if the travel is proceeding and the packet’s distance 
from the destination is Yt > 0. The probability density 
function of the position Yt is represented by f(z, t)dz = 
P [z < Yt ≤ z + dz, s(t) = S]. 

•	 W: its life-span has ended, and so has its travel. This 
can happen because the packet was destroyed or be
came lost, and the source was informed via the time-
out. After an additional exponentially distributed de
lay of parameter µ, meant to avoid mistakes in assum
ing that the packet is lost, a new packet is placed at 
the source and a new travel immediately begins. We 
write W (t) = P [s(t) = W]. 

•	 L: if the packet is destroyed or lost, and the travel is 
interrupted until a new packet can be sent out. The 
time spent in this state is exponentially distributed 
with parameter r which is the same parameter as that 
of the ”time-out” or life-span, since the source realises 
that the packet is lost or destroyed via the life-span 
or time-out effect. At the end of this exponentially 
distributed time, the packet is handled just as if it has 
been lost, and we denote L(t) = P [s(t) = L]. 

•	 P: the packet has reached its destination and the 
travel process ends. However, as an artefact to con
struct an indefinitely repeating recurrent process, after 
one time unit the travel process restarts at the source 
and a new packet is sent out. We will use the notation 
P (t) = P [s(t) = P]. 

Notice that the above process repeats itself indefinitely, and 
E[T ] is the average time that it takes from any successive 
start of the travel until the first instance when state P is 
reached again. Let P (t) be the probability that the model 
we have just described is in state P at time t ≥ 0, and let 
P = limt�� P (t). Then: 

1 
P = , E[T ] = P −1 − 1 

1 + E[T ] 

During the packet’s travel in state S while {Yt = z > 0} the 
following events can occur in the time interval [t, t +∆t[: 

•	 With probability λ(z)∆t+o(∆t) the packet is destroyed 
or lost, and enters state L. From that state it enters 
state W after an exponentially distributed delay of 
parameter r. 

•	 With probability r∆t + o(∆t) the packet’s life-span 
runs out and it enters state W. Note that 1/r is 
the average life-span. As indicated earlier, when it 



enters state W, after an additional delay of average 
value 1/µ, the packet is replaced with a new one at 
the source. 

The average rate per unit time at which the packet ap
proaches the destination node when it is at distance z is 
denoted by b(z), and the variance of the distance travelled 
in the interval [t, t +∆t[ is denoted by c(z)∆t so that: 

E[Yt+∆t − Yt|Yt = z]
b(z) = lim , 

∆t�0 ∆t 
E[(Yt+∆t − Yt)

2 − (E[Yt+∆t − Yt])
2|Yt = z] 

c(z) = lim 
∆t�0 ∆t 

When b(z) < 0, on average the packet gets closer over 
time to the destination node, but b(z) ≥ 0 is also possi
ble. Note that P is a fictitious state that we use to create 
a recurrent random process which indefinitely repeats itself. 
The packet’s distance to destination in a non-homogeneous 
medium is represented by the probability density function 
f(z, t) representing the position of the packet at time t ≥ 0, 
and assume that it satisfies the position dependent diffusion 
equation [5, 16]. Such models have been used previously to 
represent traffic in communications systems and transporta
tion systems [17, 6, 7, 13]. 
The model for the non-homogeneous medium is simplified 

to a finite but unbounded number of “segments” that have 
different parameters for the Brownian motion describing the 
packet’s movement as a function of its distance to the desti
nation node, while within each segment the parameters are 
the same. The first segment is in the immediate proxim
ity of the destination node, starting at distance z = 0. Each 
segment may have a different size, and we assume that there 
are a total of m < ∞ segments. By choosing as many seg
ments as we wish, and letting each segment be as small as 
we wish (all segments need not be of the same length), we 
can approximate as closely as needed any physical situation 
that arises where the packet’s motion characteristics vary 
over the distance of the packet to the destination node. If 
the point 0 ≤ Zk < ∞ is the boundary between the k-th 
and (k + 1)-th segments with Z0 = 0, with the last segment 
going from Zm−1 to +∞, with m and Zm−1 being finite but 
unbounded, we can take as many segments as needed, and 
they are all finite except the last segment. Thus for 1 ≤ 
k ≤ m, the k-th segment represents the range of distances 
Zk−1 ≤ z < Zk; let Sk = Zk −Zk−1 denote its size and write 
{f(z, t), b(z), c(z), λ(z)} = {fk (z, t), bk, ck, λk}. We use n to 
denote the segment number in which the source node is lo
cated, i.e. Zn−1 < D ≤ Zn. The differential equation for 
the stationary solution of the location dependent diffusion 
equation for segment k ̸= n is then: 

ck d
2fk (z) dfk(z)

0 = − bk − (λk + r)fk (z) (1) 
2 dz2 dz 

while the equation for the segment where the source is lo
cated is: 

−[P + µW ]δ(z − D) = 

cn d
2fn(z) dfn(z)− bn − (λn + r)fn(z) (2) 

2 dz2 dz 

We also have: 
m ∫∑ Zk 

rL = λk fk(z)dz (3) 
k=1 Zk−1 

m ∫∑ Zk 

µW = r[L + fk(z)dz] (4) 
k=1 Zk−1 

c1 df1(z)
P = lim [ − b1f1(z)] (5) 

z�0+ 2 dz 

and the normalisation condition: 
m ∫∑ Zk 

1 = P + W + L + fk(z)dz (6) 
k=1 Zk−1 

Result 1 Let uk, vk be, respectively, the positive and neg

ative real roots of the characteristic polynomial of the sta
tionary equation for the k-th segment: √ 

bk ± bk 
2 + 2ck(λk + r) 

uk, vk = 
ck 

Then the total average travel time, which is obtained by 
solving for P so that E[T ] = P −1 − 1, is given by: ( 1 1 )
E[T ] = + × 

r µ√ [ b2 ]unSn vnSn 
n + 2cn(λn + r) AnGne − BnF ne − 1
b21 + 2c1(λ1 + r) Gneun(Zn−D) + F nevn(Zn−D) 

(7) 

where the remaining parameters are computed as follows. 
Define: 

− ckuk − ck−1vk−1 − ckuk − ck−1uk−1
α = , β = k ck(uk − vk) k ck (uk − vk) 

ckuk − ck+1vk+1 ckuk − ck+1uk+1
α+ β+ 
k = , k = (8) 

ck(uk − vk ) ck(uk − vk) 

Then set A1 = 1 and B1 = −1 and for 2 ≤ k ≤ n compute: [ ]
Ak = 
Bk [ ] [ ] [ ]

α− β− uk−1Sk−1 
k k e 0 Ak−1 

1 − α− 1 − β− vk−1Sk−1 
k k 0 e Bk−1 

(9) 

vmZmThen set F m = 0 and Gm = e , and start another 
computation at k = m − 1 for n ≤ k ≤ m − 1 with: [ ]

F k = 
Gk [ ] [ ] [ ]
α+ β+ −uk+1Sk+1 
k k e 0 F k+1 

−vk+1Sk+11 − α+ 1 − β+ 0 ek k Gk+1 

(10) 

Proof The general solution has the form: { 
uk z vk zAke + Bke , Zk−1 ≤ z ≤ min(D, Zk)fk(z) = uk z vk zFke + Gke , max(D, Zk−1) ≤ z ≤ Zk 

Thus there are 2m + 2 constants to be determined from (a) 
the boundary conditions at 0 and +∞, (b) the continuity 
condition of the probability density function at D and at the 
boundaries between segments, and (c) conditions obtained 
by integrating the defining differential equation around D 



and the boundaries between segments. First consider the 
case Zk−1 ≤ z ≤ min(D, Zk ); to ensure continuity of the 
probability density function at z = Zk−1 we have: 

fk(Zk−1) = fk−1(Zk−1) (11) 

or equivalently 
uk Zk−1 + Bke vkZk−1 uk−1Zk−1 + Bk−1e vk−1Zk−1Ake = Ak−1e 

Furthermore, integrating the differential equation (1) from 
z = Zk−1 − ϵ to z = Zk−1 + ϵ and taking the limit as ϵ tends 
to 0 yields: 

ck dfk(Zk−1) ck−1 dfk−1(Zk−1)− = [bk − bk−1]fk(Zk−1)
2 dz 2 dz 

(12) 
or 

2bk − ck−1vk−1uk Zk−1 vk Zk−1Akuke + Bkvke = ×
 
ck
 

2bk − ck−1uk−1uk−1Zk−1 vk−1Zk−1Ak−1e + Bk−1e 
ck 

Solving (11) and (12), we can write Ak and Bk in terms of 
Ak−1 and Bk−1 as: 

uk Zk−1 uk−1Zk−1 vk−1Zk−1Ake = αk 
−Ak−1e + βk 

−Bk−1e 
vk Zk−1 − uk−1Zk−1Bke = [1 − αk ]Ak−1e 

vk−1Zk−1+ [1 − βk 
−]Bk−1e 

where α− 
k and βk 

− are defined in (8). From the boundary 
condition limz�0+ f1(z) = 0 we have B1 = −A1; there
fore the stationary solution of the differential equation for 
Zk−1 ≤ z ≤ min(D, Zk ) can be expressed as follows: 

uk(z−Zk−1) vk(z−Zk−1)fk(z) = A1[Ake + Bke ] (13) 

where the constants Ak and Bk are computed recursively 
using the matrix multiplication in (9). Next consider a seg
ment k where z ≥ D, and write the constants Fk and Gk 

in terms of Fk+1 and Gk+1 by solving boundary conditions 
similar to (11) and (12) at z = Zk: 

ukZk uk+1Zk vk+1ZkFke = α+ 
k Fk+1e + βk 

+Gk+1e 
vkZk uk+1Zk vk+1ZkGke = [1 − α+ 

k ]Fk+1e + [1 − βk 
+]Gk+1e 

Since f(z) is a probability density function we must have 
limz�� fm(z) = 0 which implies that Fm = 0, thus the 
solution for max(D, Zk−1) ≤ z ≤ Zk is given by: 

−uk (Zk −z) −vk (Zk −z)fk(z) = Gm[F ke + Gke ] (14) 

where F k and Gk are computed using (10). Note that 
Gm = e vmZm yields the desired solution for the last seg

−vm(Zm−z) vmzment, that is fm(z) = GmGme = Gme . In 
order to determine A1 and Gm, consider the n-th segment 
and apply the continuity condition of fn(z) at z = D so 
that: 

−un(Zn−D) −vn(Zn−D)Gm[F ne + Gne ] 
un(D−Zn−1) vn(D−Zn−1)= A1[Ane + Bne ] (15) 

Also, integrating the differential equation (2) from z = D −ϵ 
to z = D + ϵ and taking the limit as ϵ tends to 0 yields: 

2[P + µW ] −un(Zn−D) −vn(Zn−D)= Gm[F nune + Gnvne ]−cn
 

un(D−Zn−1) vn(D−Zn−1)
− A1[Anune + Bnvne ] (16) 

From (5), the probability P is given by: √ 
P = 

c1 
(u1 − v1)A1 = b1

2 + 2c1(λ1 + r) A1 (17) 
2 

Substituting (4) into (6) yields: ( )
1 1 

P + µW + = 1 (18) 
r µ 

Now solving the system of linear equations (15)−(18) we can 
determine A1 and Gm: [ ]

un(Zn −D) vn(Zn−D)A1 = η Gne + F ne [ ]
unSn vn(Zn−D) vnSn un(Zn−D)Gm = η Ane e + Bne e (19) 

where {
rµ/(r + µ) unSn vn Snη = √ AnGne − BnF ne 

b2 
n + 2cn(λn + r) }−1 

un(Zn −D) vn (Zn−D)− σ[Gne + F ne ] , √ 
rµ b1

2 + 2c1(λ1 + r)
σ = [1 − ] 

r + µ b2 + 2cn(λn + r)n 

Substituting A1 in (17) yields P from which the average 
travel time follows directly. 

Remark 1 With n being the index of the discretisation 
segment that includes the source node at D, it is interesting 
to see that E[T ] only depends on a set of parameters that 
are computed for values of k = 1, k = n, and on two sets 
of algebraic iterations between k = 1 and k = n and k = m 
down to k = n. 

Remark 2 When the source node is in the pen-ultimate 
segment we have m = n, and: √ 

r + µ b2 + 2cn(λn + r)n un(D−Zn−1)E[T ] = [ Ane −1] (20) 
rµ b1

2 + 2c1(λ1 + r) 

For a homogeneous medium m = n = 1 and: 

( 1 1 )
E[T ] = + [e u1D − 1] 

r µ 

as we would expect from [11]. 

Remark 3 As in [11], if energy is consumed only when 
a packet is actually being forwarded through the network, 
while during wait times for retransmissions the packet (which 
remains stored at the source until final successful delivery) 
consumes only negligible energy, then the average energy 
consumption E[J ] until the packet reaches its destination 
is: 

m ∫∑ Zk 

E[J ] = (1 + E[T ]) fk(z)dz (21) 
k=1 Zk−1 

2.1 Greater loss in remote areas 
An example of practical interest occurs when a packet that 

moves far away from its initial point and from the destina
tion node, has a greater chance of being lost or destroyed. 
This could represent a multi-hop wireless network deployed 
in a very large area; as the packet moves to remote areas 



Figure 1: E[T ] (logarithmic scale) versus the average 
time out 1/r when loss rates increases linearly and 
m = 100. 

far from the region where the source and destination are lo
cated, the nodes that the packet might visit are less likely 
to handle it and more likely to just discard it. This can also 
represent a network where there are fewer nodes in remote 
areas and inter-node communications in such areas are less 
reliable. As an example consider 100 segments with S = 1 
and a loss rate that increases with distance: λk = kℓ, ℓ > 0, 
1 ≤ k ≤ 99, λ100 = 100ℓ. If average speed of the packet’s 
motion and its second moment remain constant with bk = 0 
and ck = 1 for 1 ≤ k ≤ 100, the results with D = 10 in 
Figure 1 show that a relatively short time-out is needed to 
optimise the average travel time, but that the resulting op
timum is nevertheless very large. 

3. RETARDING AN ATTACKING PACKET 
Another interesting case arises when the packet that we 

are modelling contains some form of attack on the destina
tion node, such as a virus or a worm. Also, we suppose that 
the network protects this particular node by introducing a 
capability at intermediate nodes to detect the contents of the 
packet and to drop it. However the sender will then, after a 
time-out, send the attacking packet again. The question is 
then whether it is possible to block the attack indefinitely or 
whether to the contrary the attacking packet will eventually 
reach the destination node that is being defended. 
We examine this problem in the context of a wired network 

that uses shortest path routing. Thus if the distance D refers 
to the number of hops from source to destination, and if the 
routers are operating properly, we will have b = −1 and 
c = 0 throughout the network. More generally if there is 
no uncertainty in routing ck = 0 and bk < 0, and it can be 
shown that the total average travel time does not depend on 
the network’s parameters for z > D: 

( )∑�n+r n−1 �k +r �n+rr + µ D − Sk|bn| k=1 |bk| |bn|E[T ] = [e e − 1] (22) 
rµ 

Furthermore if the routers are perfect and always provide 

Figure 2: E[T ] versus n when λk = 0.1(n − 1)a−1 for 
different values of a; bk = −1, ck = 0, Sk = D/(n − 1), 
µ = 0.1, r = 0.02, and D = 100. 

shortest distance routing we have bk = −1 and: 

r + µ n−1 

E[T ] = [e(�n+r)D e 
∑

k=1 (�k −�n)Sk − 1] (23) 
rµ 

Now let us introduce a non-homogeneous packet drop ef
fect by choosing an integer n to create an acceleration in the 
packet drop effect and let Sk = D/(n − 1) so that: 

∑n−1 
k=1 �kr + µ (r+ )DE[T ] = [e n−1 − 1] (24) 

rµ 

which yields the following result. ∑n−1 �kResult 2 If limn�� 
k=1 = +∞ then the packet will 
n−1 

never reach the destination node. Otherwise it will reach it 
in a time which is finite on average, and with probability 
one. 

Figure 2 illustrates Result 2 by showing that even with a 
small excess, represented by a > 1, above the O(n) rate of 
increase for the loss rate λk the attacking packet’s progress 
will be indefinitely impeded by the drops, despite the sub
sequent time-outs. 

3.1 A neighbourhood with traps 
As a final and related example suppose that routers in the 

neighbourhood of the destination node within a distance S 
contains “traps” that can identify the attacking packet and 
drop it. Accidental drops of the packet (due to transmission 
errors or buffer overflows) may also occur at a lower rate. 
Thus we take m = n = 2, so that E[T ] is obtained from (20) 
with λ2 = λ and λ1 = λ + γ, γ > 0: √ 

r + µ b2 + 2c2(λ + r)2 u2 (D−S)E[T ] = [ A2e − 1] 
rµ b1

2 + 2c1(λ + γ + r) 

Figure 3 shows the manner in which E[T ] sharply in
creases with γ, for S ranging between 10 and 15, D = 100, 
b2 = b1 = 0.25, c1 = c2 = 1, λ = 0. Also µ = 1/10 and 
r is set to the value that minimises E[T ] when γ = 0 and 
S = 10. Figure 4, with S = 10 and the same set of param
eters, shows that even small increases (more negative) in 



Figure 3: Average travel time E[T ] versus γ = λ1 −λ2 

for S = 10 to 15 with a step size of 1. 

Figure 4: E[T ] (logarithmic scale) versus b1 for dif
ferent values of λ1. 

average speed at which the packet approaches its objective 
can reduce average travel time by an order of magnitude, 
yet E[T ] is still very large. 
Figures 5 and 6 question how S and λ1 may be selected 

together in order to maximise the protection offered to the 
destination node. If we keep the same set of parameters 
as previously but take λ1 to be inversely proportional to S 
in Figure 5 so that the average number of protecting nodes 
λ1 ≈ 1/S, and the ratio of time rate to spatial rate will re
main constant for any fixed value of b1 which is the speed 
of motion. Figure 5 shows that there is indeed an optimum 
size of protection space S = that maximises the delay S� 

before the attacking packet can reach the destination node, 
and that it varies with the speed b1 of the packet inside the 
protected neighbourhood. As the speed increases, the opti
mum size of the neighbourhood gets smaller. This may be 
counterintuitive but it follows from the fact that we have 
taken λ1 ≈ 1/S: a smaller size implies a higher “rate of pro-

Figure 5: Average travel time E[T ] versus S when 
λ1 = 10/S for different values of b1. The optimum 
protection area needed becomes smaller so that λ1 

increases when the packet’s speed increases. 

tection” and hence more frequently occurring destructions 
of the packet which compensate for the higher speed of the 
packet. However the corresponding maximum values of E[T ] 
do become smaller as the packet’s speed increases. In Figure 
6 we set b1 = b2 = 0.25 and Λ is varied in λ1 = Λ/S2 . The 
results are similar to the previous ones. 

For the examples of Figures 5 and 6 the average energy 
expenditure is closely proportional to E[T ] because 

m ∫∑ Zk 

fk(z)dz ∼= 1 
Zk−1k=1 

so that we omit showing the numerical results for the energy. 

4. CONCLUSIONS 
We have presented a Brownian motion model to repre

sent a packet’s travel to a destination node in a very large 
non-homogeneous network. A mixed analytical-numerical 
method has been developed to compute the average packet 
travel time and the energy it consumes. We observe that 
the degree of non-homogeneity of the network will signifi
cantly affect the average travel time and energy consumed. 
The role of time-outs to optimise these quantities has been 
exhibited, and two examples have been detailed. In the first 
example, packet losses (for instance due to insufficient wire
less network coverage) increase as the packet reaches areas 
which are remote from the source and destination nodes. In 
the second example we model an attacking packet which may 
be detected and destroyed as it approaches the destination 
node, but in turn the attacking packet may progress more 
rapidly as it approaches the destination node, for instance 
because a directional routing being used may become more 
accurate. Comparing the increasing speed of approach of 
the packet with the possible steeper defenses of the destina
tion node, we observe that there may be conditions whereby 
despite the use of time-outs the attacking packet may never 
make it to the destination node, while in other circumstances 
the attack will be successful. 



Figure 6: Average travel time E[T ] versus S when 
λ1 = Λ/S2 for Λ = 0.1 to 0.5. The protection area 
needed to maximise the travel time decreases as Λ 
increases. 
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