
An Intelligent Internet Search Assistant based on the
Random Neural Network

Will Serrano

Intelligent Systems and Networks Group, Electrical and Electronic Engineering

Imperial College London

2 g.serrano11@imperial.ac.uk

Abstract. Web users can not be guaranteed that the results provided by Web search
engines or recommender systems are either exhaustive or relevant to their search
needs. Businesses have the commercial interest to rank higher on results or recom-
mendations to attract more customers while Web search engines and recommender
systems make their profit based on their advertisements and product purchase. This
research analyses the result rank relevance provided by the different Web search en-
gines, metasearch engines, academic databases and recommender systems. We pro-
pose an Intelligent Internet Search Assistant (ISA) that acts as an interface between
the user and the different search engines. We also present a new relevance metric
which combines both relevance and rank. We use this metric to validate and compare
the performance of our proposed algorithm against other search engines and recom-
mender systems. On average, our ISA outperforms other search engines

Keywords: Intelligent Internet Search Assistant; World Wide Web; Random
Neural Network; Web search; Search Engines

1 Introduction

The need to search for specific information or products in the ever expanding Internet
[28, 29] has led the development of Web search engines and recommender systems.
Whereas their benefit is the provision of a direct connection between users and the
information or products sought, any search outcome will be influenced by a commer-
cial interest as well as by the users’ own ambiguity in formulating their requests or
queries. An example of this situation is travel services. The Internet has made acces-
sible real time travel industry’s information and services; customers can purchase
flight tickets, hotels and holiday packs online. Distribution costs have been reduced
due a shorter value chain; however businesses not shown on the top positions within
the search results may lose potential customers. A similar scenario also occurs within
academic search; the Internet has allowed the democratization of academic publica-
tions. Authors can upload their work onto their personal Webpages bypassing the
traditional model of the journal peer review. There is the biased interest from authors
to get their publications in top search positions in order to reach a bigger audience so

they will be cited more. In both examples ranking algorithms are essential as they
decide the relevance; they make information visible or hidden to customers or users.
Under this model, Web search engines or recommender systems can be tempted to
artificially rank results from some specific businesses for a fee whereas also authors
or business can be tempted to manipulate ranking algorithms by “optimizing” the
presentation of their work or products. The main consequence is that irrelevant results
may be shown on top positions and relevant ones “hidden” at the very bottom of the
search list.

We describe the application of neural networks in Web search and recommender sys-
tems in Section 2. In order to address the presented search issues; this paper proposes
in Section 3 an Intelligent Internet Search Assistant (ISA) that acts as an interface
between an individual user’s query and the different search engines. Our ISA acquires
a query from the user and retrieves results from one or various search engines assign-
ing one neuron per each Web result dimension. The result relevance is calculated by
applying our innovative cost function based on the division of a query into a multidi-
mensional vector weighting its dimension terms with different relevance parameters.
Our ISA adapts and learns the perceived user’s interest and reorders the retrieved
snippets based in our dimension relevant centre point. Our ISA learns result relevance
on an iterative process where the user evaluates directly the listed results. We evaluate
and compare its performance against other search engines with a new proposed quali-
ty definition, which combines both relevance and rank. We have also included two
learning algorithms; Gradient Descent learns the centre of relevant dimensions and
Reinforcement Learning updates the network weights based on rewarding relevant
dimensions and punishing irrelevant ones. We have validated our ISA against other
Web search engines and metasearch engines, online databases and recommender sys-
tems on Section 4. We have also analysed the Gradient Descent and Reinforcement
Learning algorithms based on result relevance and learning speed; our conclusions are
presented on Section 5.

2 Related work

The ability of neural networks to learn iteratively from different inputs to acquire the
desired outputs as a mechanism of adaptation to users’ interest in order to provide
relevant answers have already been applied in the World Wide Web and recommend-
er systems. Scarselli, F. et al [1] and Chau, M. et al [2] use a neural network by as-
signing a neuron to each Web page; therefore they create a graph where the neural
links are the equivalent of the hyperlinks; in our proposal we have assigned a neuron
per result dimension optimizing its ranking based on a Random Neural Network with
a defined cost function. Bermejo, S. et al [3] use a similar approach to our proposal,
the allocation of one neuron per Web search result, however the main difference is
that the network is trained to cluster results by meaning; we reorganize results without
any previous training by using the Random Neural Network algorithm iteratively with
a defined cost function. Burgues, C. et al [4] define RankNet which uses neural net-

works to evaluate Web sites by training the neural network based on query-document
pairs. In our solution it is the user who recursively trains the network while selecting
relevant results. Shu, B. et al [5] retrieve results from different Web search engines
and train the network following the belief that a result in a top position would be rele-
vant, the main difference with our research is that we use a cost function to reorganize
results and learn the user’s perception of relevance. Boyan, J. et al [6] use Reinforce-
ment Learning to rank Web pages using their HTML properties and hyperlink connec-
tions between them; it differs from our approach that consists of ranking the results
provided by Web search engines. Wang, X. et al [7] use a back propagation neural
network with its input nodes corresponding to an specific quantified user profile and
one output node which it is the a probability the user would consider the Web page
relevant whereas we assign a neuron per result dimension instead of user profile term.

S. Patil et al [8] propose a recommender system using collaborative filtering mecha-
nism with k-separability approach for Web based marketing. They build a model for
each user on several steps: they cluster a group of individuals into different categories
according to their similarity using Adaptive Resonance Theory (ART) and then they
calculate the Singular Value Decomposition matrix. They use a feed forward neural
network where the input is the user ratings' matrix and the target user and the output is
the user model. M. Lee et al [9] propose a new recommender system which combines
collaborative filtering with a Self-Organizing Map neural network. They segment all
users by demographic characteristics where users in each segment are clustered ac-
cording to the preference of items using the neural network. The collaborative filter-
ing algorithm is applied on the cluster where the user belongs. The Self-Organizing
Map neural network is an unsupervised learning model which learns the preference of
items in each segment. Its input is the user segments and the output is the cluster type.
It provides to the collaborative filter algorithm the cluster the user belongs to. C.
Vassiliou et al [10] propose a framework that combines neural networks and collabo-
rative filtering. Their approach uses a neural network to recognize implicit patterns
between user profiles and items of interest which are then further enhanced by collab-
orative filtering to personalized suggestions. The neural network algorithm is trained
on each user ratings vector. The output of the neural network is a pseudo user ratings
vector that fills the unrated items; this avoids the common sparsity issue on recom-
mender systems. The neural network is a multiplayer feed forward model. K.
Kongsakun et al [11] develop an intelligent recommender system framework based on
an investigation of the possible correlations between the students' historic records and
final results. The have used a multi layered feed forward neural network to find struc-
tures and relationships within the data with a supervised learning process. C. Chang et
al [12] train the artificial neural networks to group users into different types. They use
an Adaptive Resonance Theory (ART) neural network model in an unsupervised
learning model where the input layer is a vector made of user's features and the output
layer is the different cluster. The ART neural network is formed of 255 input and 5
output neurons. P. Chou et al [13] integrate a back propagation neural network with
supervised learning and feed forward architecture in an “interior desire system”. The
rationale of the proposed approach is that if users have similar navigation patterns,

then they may have similar interest for some products. The neural network classifies
users with similar navigation patterns into groups with similar intention behavioural
patterns. D. Billsus et al [14] propose a representation for collaborative filtering tasks
that allows the application of any machine learning algorithm, including a feed for-
ward neural network with k input neurons, 2 hidden neurons and 1 output neuron.
They convert the training data, a sparse matrix of user ratings to boolean feature vec-
tors and then they calculate the Singular Value Decomposition (SVD). They train the
neural network with the k singular vector. The output neuron represents the predicted
user rating. M. Krstic et al [15] apply a single hidden layer feed forward neural net-
work as a classifier tool which estimates whether a certain TV programme is relevant
to the user based on the TV programme description, contextual data and the feedback
provided by the user. The number of neurons is the input layer is determined by the
number of dimensions of the vector space, three for the genre coordinates and two for
contextual data. The number of output neuros is two, one for like and the other for
dislike. C. Biancalana et al [16] propose a neural network to include contextual in-
formation on film recommendations. The aim of the neural network is to identify
which member of a household gave a specific rating to a film at a specific time. The
input layer is formed of 68 neurons and the output layer consists of 3 neurons which
represent the different classifiers. M. Devi et al [17] use a probabilistic neural network
to calculate the rating between users based on the rating matrix. They smooth the
sparse rating matrix by predicting the rating values of the unrated items. They model
users using a Self-Organizing Map and unsupervised techniques. The probabilistic
neural network is used to identify the rating cluster.

3 The Intelligent Internet Search Assistant Model

The search assistant we design is based on the Random Neural Network (RNN) [18,
19,20]. This is a spiking recurrent stochastic model for neural networks. Its main ana-
lytical properties are the “product form” and the existence of the unique network
steady state solution. It represents more closely how signals are transmitted in many
biological neural networks where they actual travel as spikes or impulses, rather than
as analogue signal levels, and has been used in different applications including net-
work routing with cognitive packet networks, using reinforcement learning, which
requires the search for paths that meet certain pre-specified quality of service re-
quirements [21], search for exit routes for evacuees in emergency situations [22,23]
and network routing [27], pattern based search for specific objects [24], video com-
pression [25], image texture learning and generation [26].

In the case of our own application of the RNN, the search for information or for some
meaning needs requires us to specify some elements: an M-dimensional universe of X
entities or ideas to be searched, a high level query that specifies the N-properties or
concepts requested by a user and a method that searches and selects Y entities from
the universe showing the first Z results to user according to an algorithm or rule. Each
entity or concept in the universe is distinct from the others in some recognizable way;

for instance two entities may be different just in the date or time-stamp that character-
izes the time when they were last stored or in the ownership or origin of the entities.
On the other hand, we consider concepts to be distinct if they contain any different
meaning, even though if they are identical with respect to a user’s query.

We consider that the universe which we are searching within as a relation U that con-
sists of a set of X M-tuples, U = {v1 , v2 … vX}, where vi = (li1 , li2 … liM) and li are
the M different attributes for i=1,2..X. The relation U is a very large relation consist-
ing on M >> N attributes. The important concept in the development of this paper is a
query can be defined as Rt(n(t)) = (Rt(1), Rt(2), …, Rt(n(t))) where n(t) is a variable
N-dimension attribute vector with 1<N<M and t is the search iteration being t>0; n(t)
is variable so that attributes can be added or removed based on their relevance as the
search progresses, i.e. as t increases. Each Rt(n(t)) takes its values from the attributes
within the domain D(n(t)), where D is the corresponding domain that forms the uni-
verse U. Thus D(n(t)) is a set of properties or meanings based in words or integers,
but also words in another language, or a set of icons, images or sounds.

The answer A to the query Rt(n(t)) is a set of Y M-tuples A = {v1 , v2 … vY} where vo
= (lo1 , lo2 … loM) and lo are the M different attributes for o=1,2..Y. Our Intelligent
Internet Search Assistant only shows to the user the first set of Z tuples that have the
highest neuron potentials among the set of Y tuples. The neuron potential that repre-
sents the relevance of each M-tuple vo is calculated at each t iteration. The user or the
high level query itself is limited mainly by two main factors: the user’s lack of infor-
mation about all the attributes that form the universe U of entities and ideas, or the
user’s lack of precise knowledge about what he is looking for.

3.1 Result Cost Function

We consider the universe U is formed of the entire results that can be searched. We
assign each result provided by a search engine to an M-tuple vo of the answer set A.
We calculate the result relevance based on a cost function described within this sec-
tion. The query Rt(n(t)) is a variable N-dimension vector that specifies the attributes
the user consider relevant. The number of dimensions of the attribute vector n(t) var-
ies as the iteration t increases. Our Intelligent Internet Search Assistant associates an
M-tuple vo to each result provided by the Search Engine creating an answer set A of Y
M-tuples. Search Engines select their results from the universe U. We apply our cost
function to each result or M-tuple vo from the answer set A of Y M-tuples. We con-
sider each vo as a M-dimensional vector. The cost function is firstly calculated based
on the relevant N attributes the user introduced on the High Level Query, R1(n(1))
within the domain D(n(1)) however, as the search progresses, Rt(n(t)), attributes may
be added or removed based on the perceived relevance within the domain D’(n(t)).
We calculate the overall Result Score, RS, by measuring the relationship between the
values of its different attributes:

 HWRVRS ∗= (1)

where RV is the Result Value which measures the result relevance and HW the Ho-
mogeneity Weight. The Homogeneity Weight (HW) rewards results that have rele-
vance or scores dispersed along their attributes. This parameter is also based on the
idea that the first dimensions or attributes of the user query Rt(n(t)) are more im-
portant than the last ones:

N

HF[n]
HW

N

1n
∑
== (2)

where HF[n], homogeneity factor, is a N-dimension vector associated to the result and
n is the attribute index from the query Rt(n(t)):

 0SD[n] if0HF[n]0SD[n] if
N

n-NHF[n] ==>= (3)

We define Score Dimension SD[n] as a N-dimension vector that represents the attrib-
ute values of each result or M-tuple vo in relation with the query Rt(n(t)). The Result
Value (RV) is the sum of each dimension individual score:

 ∑
=

=
N

1n
SD[n]RV (4)

where n is the attribute index from the query Rt(n(t)). Each dimension of the Score
Dimension vector SD[n] is calculated independently for each n-attribute value that
forms the query Rt(n(t)):

 DPWRPWPPWSSD[n] ∗∗∗= (5)

We consider only three different types of domains of interest: words, numbers (as for
dates and times) and prices. S is the score calculated depending if the domain of the
attribute is a word (WS), number (NS) or price (PS). If the domain D(n) is a word, our
ISA calculates the score Word Score (WS) following the formula:

NW
WRS = (6)

where the value of WR is 1 if the word of the n-attribute of the query Rt(n(t)) is con-
tained in the search result or 0 otherwise. NW is the number of words in the search
result. If the domain D(n) is a number, our ISA selects the best Number Score (NS)
from the numbers they are contained within the search result that maximizes the cost
function:

NN

RVDV
RV-DV

-1

S
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
= (7)

where DV is the value of the n-attribute of the query Rt(n(t)), RV is the value of a
number in the result and NN is the total number of numbers in the result. If the do-
main D(n) is a price, our ISA chooses the best Price Score (PS) from the prices in the
result that maximizes the cost function:

NP
RV
DV

S
⎟
⎠

⎞
⎜
⎝

⎛

= (8)

where DV is value of the n-attribute of the query Rt(n(t)), RV is the value of a price in
the result and NP is the total number of prices in the result. We penalize if the search
result provides unnecessary information by dividing the score by the total amount of
elements in the Web result. The dimension Score Dimension vector, SD[n] is
weighted according to different relevance factors:

 DPWRPWPPWSSD[n] ∗∗∗= (9)

The Position Parameter Weight (PPW) is based on the idea that an attribute value
shown within the first positions of the search result is more relevant than if it is shown
at the final:

NC
DVP-NCPPW = (10)

where NC is the number of characters in the result and DVP is the position within the
result where the value of the dimension is shown. The Relevance Parameter Weight
(RPW) incorporates the user’s perception of relevance by rewarding the first attrib-
utes of the query Rt(n(t)) as highly desirable and penalising the last ones:

N
PD1RPW −= (11)

where PD is the position of the n-attribute of the query Rt(n(t)) and N is the total
number of dimensions of the query vector Rt(n(t)). The Dimension Parameter Weight
(DPW) incorporates the observation of user relevance with the value of domains
D(n(t)) by providing a better score on the domain values the user has more filled on
the query:

N
NDTDPW = (12)

where NDT is the number of dimensions with the same domain (word, number or
price) on the query Rt(n(t)) and N is the total number of dimensions of the query vec-
tor Rt(n(t)). We assign this final Result Score value (RS) to each M-tuple vo of the
answer set A. This value is used by our ISA to reorder the answer set A of Y M-
tuples, showing to the user the first set of Z results which have the higher potential.

3.2 User Iteration

The user, based on the answer set A can now act as an intelligent critic and select a
subset of P relevant results, CP, of A. CP is a set that consists of P M-tuples CP = {v1 ,
v2 … vP}. We consider vP as a vector of M dimensions; vp = (lp1 , lp2 … lpM) where lp
are the M different attributes for p=1,2..P. Similarly, the user can also select a subset
of Q irrelevant results, CQ of A, CQ = {v1 , v2 … vQ}. We consider vq as a vector of M
dimensions; vq = (lq1 , lq2 … lqM) where lq are the M different attributes for q=1,2..Q.
Based on the user iteration, our Intelligent Internet Search Assistant provides to the
user with a different answer set A of Z M-tuples reordered to MD, the minimum dis-
tance to the Relevant Centre for the results selected, following the formula:

P

l

P

[n]SD

RCP[n]

P

1p
pn

P

1p
p ∑∑

==
== (13)

where P is the number of relevant results selected, n the attribute index from the query
Rt(n(t)) and SDp[n] the associated Score Dimension vector to the result or M-tuple vP
formed of lpn attributes. An equivalent equation applies to the calculation of the Irrel-
evant Centre Point. Our Intelligent Internet Search Assistant reorders the retrieved Y
set of M-tuples showing only to the user the first Z set of M-tuples based on the low-
est distance (MD) between the difference of their distances to both Relevant Centre
Point (RD) and the Irrelevant Centre Point (ID) respectively:

 IDRDMD −= (14)

where MD is the result distance, RD is the Relevant Distance and ID is the Irrelevant
Distance. The Relevant Distance (RD) of each result or M-tuple vq is formulated as:

 ()∑
=

=
N

1n

2RCP[n]-SD[n]RD (15)

where SD[n] is the Score Dimension vector of the result or M-tuple vq and RCP[n] is
the coordinate of the Relevant Centre Point. Equivalent equation applies to the calcu-
lation of the Irrelevant Distance. Therefore we are presenting an iterative search pro-
gress that learns and adapts to the perceived user relevance.

3.3 Dimension Learning

The answer set A to the query R1(n(1)) is based on the N dimension query introduced
by the user however results are formed of M dimensions therefore the subset of results
the user has considered as relevant may have other relevant concepts hidden the user
did not considered on the original query. We consider the domain D(m) or the M at-
tributes from which our universe U is formed as the different independent words that
form the set of Y results retrieved from the search engines. Our cost function is ex-

panded from the N attributes defined in the query R1(n(1)) to the M attributes that
form the searched results. Our Score Dimension vector, SD[m], is now based on M-
dimensions. An analogue attribute expansion is applied to the Relevance Centre Cal-
culation, RCP[m]. The query R1(n(1)) is based on the N-Dimension vector introduced
by the user however the answer set A consist of Y M-tuples. The user, based on the
presented set A, selects a subset of P relevant results, CP and a subset of Q irrelevant
results, CQ.

Lets consider CP as a set that consists of P M-tuples CP = {v1 , v2 … vP} where vP is a
vector of M dimensions; vP = (lp1 , lp2 … lpM) and lp are the M different attributes for
p=1,2..P. The M-dimension vector Dimension Average, DA[m], is the average value
of the m-attributes for the selected relevant P results:

P

l

P

[m]SD

DA[m]

P

1p
pm

P

1p
p ∑∑

== == (16)

where P is the number of relevant results selected, m the attribute index of the relation
U and SDp[m] the associated Score Dimension vector to the result or M-tuple vP
formed of lpm attributes. We define ADV as the Average Dimension Value of the M-
dimension vector DA[m]:

M

DA[m]
ADV

M

1m
∑
== (17)

where M is the total number of attributes that form the relation U. The correlation
vector σ[m] is the difference between the dimension values of each result with the
average vector:

() ()

P

DA[m] - l

P

DA[m] - [m]SD

σ[m]

P

1p
Pm

P

1p
p ∑∑

== == (18)

where P is the number of relevant results selected, m the attribute index of the relation
U and SDp[m] the associated Score Dimension vector to the result or M-tuple vP
formed of lpm attributes. We define C as the average correlation value of the M-
dimensions of the vector σ[m]:

M

σ[m]
C

M

1m
∑
== (19)

where M is the total number of attributes that form the relation U. We consider an m-
attribute relevant if its associated Dimension Average value DA[m] is larger than the
average dimension ADV and its correlation value σ[m] is lesser than the average cor-

relation C. We have therefore changed the relevant attributes of the searched entities
or ideas by correlating the error value of its concepts or properties represented as at-
tributes or dimensions. On the next iteration, the query R2(n(2)) is formed by the at-
tributes our ISA has considered relevant. The answer to the query R2(n(2)) is a differ-
ent set A of Y M-tuples. This process iterates until there are not new relevant results
to be shown to the user.

3.4 Gradient Descent Learning

Gradient Descent learning is based on the adaptation to the perceived user interests or
understanding of meaning by correlating the attribute values of each result to extract
similar meanings and cancel superfluous ones. The ISA Gradient Descent learning
algorithm is based on a recurrent model. The inputs i = {i1,…,iP} are the M-tuples vP
corresponding to the selected relevant result subset CP and the desired outputs y =
{y1,…,yP} are the same values as the input. Our ISA then obtains the learned random
neural network weights, calculates the relevant dimensions and finally reorders the
results according to the minimum distance to the new Relevant Centre Point focused
on the relevant dimensions.

3.5 Reinforcement Learning

The external interaction with the environment is provided when the user selects the
relevant result set CP. Reinforcement Learning adapts to the perceived user relevance
by incrementing the value of relevant dimensions and reducing it for the irrelevant
ones. Reinforcement Learning modifies the values of the m attributes of the results,
accentuating hidden relevant meanings and lowering irrelevant properties. We associ-
ate the Random Neural Network weights to the answer set A; W = A. Our ISA up-
dates the network weights W by rewarding the result relevant attributes by:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+=

∑ =

M
1m

1-s
pm

1-s
pm1-s

pm
1-s

pm
l

l
*l l m)w(p, (20)

where p is the result or M-tuple vP formed of lpm attributes, m the result attribute in-
dex, M the total number of attributes and s the iteration number. ISA also updates the
network weights by punishing the result irrelevant attributes by:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

∑ =

M
1m

1-s
pm

1-s
pm1-s

pm
1-s

pm
l

l
*l l m)w(p, (21)

where p is the result or M-tuple vP formed of lpm attributes, m the result attribute in-
dex, M the total number of attributes and s the iteration number. Our ISA then recal-
culates the potential of each of the result based on the updated network weights and
reorders them, showing to the user the results which have a higher potential or score.

4 Validation

We can affirm the superior search engine will have the higher density of better scoring
results on top positions based on the result master list. In order to measure numerically
Web search quality or to establish a benchmark from we can compare Web search
performance; we propose the following algorithm, where results showed at top posi-
tions are rewarded and results showed at lower positions are penalized. Lets define
quality, Q, as:

 ∑
=

∗=
Y

1result
RSERMLQ (22)

where RML is the rank of the result in the master list, RSE is the rank of the same
result in a particular search engine and Y is the number of results shown to the user, if
the result order is larger than Y, we discard the result in our calculation as it is consid-
ered irrelevant. We define normalized quality,Q , as the division of the quality, Q, by
the optimum figure which it is when the results provided are ranked in the same order
as in the master list; this value corresponds to the sum of the squares of the first Y
integers:

6
1)1)(2YY(Y

QQ
++

= (23)

where Y the total number of results shown to the user.

4.1 Web Search Validation

Intelligent Internet Search Assistant we have proposed emulates how Web search en-
gines work by using a very similar interface to introduce and display information. We
validate our proposed ISA with current Metasearch engines, we retrieve the results
from the Web search engines they use to generate the result master list and then com-
pare the results provided by the Metasearch engines against this result master list. This
proposed method has the inconvenience that we are not considering any result obtained
from Internet Web directories neither Online databases from where Metasearch en-
gines may have retrieved some results displayed. We have selected both Ixquick and
Metacrawler as the Metasearch engines we can compare our ISA. After analysing the
main characteristics of both Metasearch engines we consider Metacrawler uses
(Google Yahoo and Yandex) and Ixquick uses (Google Yahoo and Bing) as their main
source of search results. We have run our ISA to acquire 10 different high level queries
based on the travel industry from a user. The ISA then retrieves the first 30 results
from each of the main Web search engine driver programmed (Google, Yahoo, Bing,
and Yandex), we have therefore scored 30 points to the Web site result that is dis-
played in the top position, 1 point to the Web site result that is shown in the last posi-
tion and 0 points to each of the result that belongs to the same Web site and it is shown
more than once. After we have scored the 120 results provided by the 4 different Web
search engines, we combine them by adding the scores of the results which have the
same Web site and rank them to generate the result master list. We have done this

evaluation exercise for each high level query. We then retrieve the first 30 results from
Metacrawler and Ixquick and benchmark them against the result master list using the
Quality formula proposed. We present the average Quality values for the 10 different
queries on the below table.

Table 1. Web Search Validation

10 Queries

Google Yahoo Bing Yandex MetaC Ixquick ISA

0.67 0.66 0.66 0.68 0.59 0.42 0.65

4.2 Database Validation

Our Intelligent Internet Search Assistant can select between the main Online Academic
(Google Scholar, IEEE Xplore, CiteseerX or Microsoft Academic) and the type of
learning to be implemented. Our ISA then collects the first 50 results from the search
engine selected, reorders them according to its cost function and finally shows to the
user the first 20 results. Our ISA reorders results while learning on the two step itera-
tive process showing only the best 20 results to the user. We have searched for 6 dif-
ferent queries. We have used the four different Online Academic Databases for each
query, 24 searches in total. We have selected Gradient Descent and Reinforcement
Learning for 3 queries (12 searches) each. The table shows the average Quality value
of the Database search engine and ISA. The first I represents the improvement from
ISA against the Online Academic Databases; the second I is between ISA iterations 2
and 1 and finally the third I is between the ISA iterations 3 and 2.

Table 2. Database Validation

Gradient Descent Learning: 12 Queries
Web ISA I Web ISA I Web ISA I

0.44 0.56 29% 0.48 0.64 13% 0.50 0.66 3.6%

Reinforcement Learning: 12 Queries
Web ISA I Web ISA I Web ISA I

0.41 0.51 25% 0.44 0.61 19% 0.46 0.64 5.2%

4.3 Recommender System Validation

We have implemented our Intelligent Search Assistant to reorder the results from three
different independent recommender systems: GroupLens film database, Trip Advisor
and Amazon. Our ISA reorders the films or products based on the updated result rele-
vance calculated by combining only the value of the relevant selected dimensions. The
higher the value the more relevant the film or product should be. ISA shows to the user
the first 20 results including its ranking. The user then selects the films or products
with higher ranking; this ranking has been previously calculated by adding user re-
views to the same products and calculating the average value. We have included Gra-
dient Descent and Reinforcement Learning for different queries in our validation. The

table below show the average Quality value, the first I represents the improvement
from ISA against the recommender system; the second I is between ISA iterations 2
and 1 and finally the third I is between the ISA iterations 3 and 2.

Table 3. Recommder System Validation

GroupLens film dataset - Gradient Descent Learning -5 Queries
First (Q) Iteration 1 (I) Iteration 2 (I) Iteration 3 (I)

0.71 17.45% 0.145% 1.79%

GroupLens film dataset - Reinforcement Learning -5 Queries

0.76 5.26% 9.14% 6.05%

Trip advisor car dataset - Gradient Descent Learning -5 Queries

0.94 0.0328% 0.017% 0.0007%

Trip advisor car dataset - Reinforcement Learning -5 Queries
0.94 0.798% 0.004% 0.0165%

Trip advisor hotel dataset-Gradient Descent Learning -5 Queries

0.94 0.54% -0.0607% -0.0395%

Trip advisor hotel dataset - Reinforcement Learning -5 Queries

0.94 0.728% 4.658% 0.139%

Amazon dataset-Gradient Descent Learning -5 Queries

0.15 33.89% 8.39% -6.97%

Amazon dataset - Reinforcement Learning -5 Queries

First (Q) Iteration 1 (I) Iteration 2 (I) Iteration 3(I)

0.15 30.36% 13.05% 0.503%

5 Conclusions

We have proposed a novel approach to Web search and recommendation systems
where the user iteratively trains the neural network while looking for relevant results.
We have also defined a different process; the application of the Random Neural Net-
work as a biological inspired algorithm to measure both user relevance and result
ranking based on a predetermined cost function. Our Intelligent Search Assistant per-
forms generally slightly better than Google and other Web search engines however,
this evaluation may be biased because users tend to concentrate on the first results
provided which were the ones we showed in our algorithm. Our ISA adapts and learns
from user previous relevance measurements increasing significantly its quality and
improvement within the first iteration. Reinforcement Learning algorithm performs
better than Gradient Descent. Although Gradient Descent provides a better quality on
the first iteration; Reinforcement Learning outperforms on the second one due its
higher learning rate. Both of them have a residual learning on their third iteration.
Gradient Descent would have been the preferred learning algorithm if only one itera-
tion is required; however Reinforcement Learning would have been a better option in

the case of two iterations. It is not recommended three iterations because learning is
only residual.

Acknowledgment

This research has used Groupfilms dataset from the Department of Computer Sci-
ence and Engineering at the University of Minnesota; Trip Advisor dataset from the
University of California-Irvine, Machine Learning repository, Centre for Machine
Learning and Intelligent Systems and Amazon dataset from Julian McAuley Computer
Science Department at University of California, San Diego.

References

1. Scarselli, F., Liang, S., Hagenbuchner, M., Chung, A.: Adaptive page ranking with neural
networks. Proceeding WWW '05 Special interest tracks and posters of the 14th interna-
tional conference on World Wide Web, 936- 937 (2005)

2. Chau, M., Chen, H.: Incorporating Web analysis into neural networks: an example in Hop-
field net searching. IEEE transactions on systems and cybernetics – Part C: applications
and reviews, Vol 37, No 3, 352-358 (2007)

3. Bermejo, S., Dalmau, J.: Web metasearch using unsupervised neural networks. IWANN '03
Proceedings of the 7th International work-conference on artificial and natural neural net-
works: Part II: artificial neural nets problem solving methods, 711-718 (2003)

4. Burgues, C., Shaked, T., Renshaw, E., Lazier, L., Deeds, M., Hamilton, N., Hullender, G.:
Learning to rank using gradient descent. ICML '05 Proceedings of the 22nd international
conference on machine learning, 89-96 (2005)

5. Shu, B., Kak, S.: A neural network-based intelligent metasearch engine. Information sci-
ences, informatics and computer science, Vol 120, 1-11 (2009)

6. Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing Web
search engines. Proceedings of the AAAI workshop on Internet-based information systems
(1996)

7. Wang, X., Zhang, L.: Search engine optimization based on algorithm of BP neural net-
works. Proceedings of the seventh international conference on computational intelligence
and security, 390-394 (2011)

8. Patil, S., Mane, Y., Dabre, K., Dewan, P. and Kalbande, D.: An efficient recommender
system using collaborative filtering methods with k-separability approach. International
journal of engineering research and applications, 30-35 (2012)

9. Lee, M., Choi, P., Woo, Y.: A hybrid recommender system combining collaborative filter-
ing with neural network. Adaptive hypermedia and adaptive Web-based systems, Vol 2347,
531-534 (2002)

10. Vassiliou, C., Stamoulis, D., Martakos, D., Athanassopoulos, S.: A recommender system
framework combining neural networks & collaborative filtering. International conference
on instrumentation, measurement, circuits and systems, 285-290 (2006)

11. Kongsakun, K., Kajornrit J., Fung, C.: Neural network modelling for an intelligent rec-
ommendation system supporting SRM for universities in Thailand. International confer-
ence on computing and information technology, Vol 2, 34-44 (2013)

12. Chang, C., Chen, P., Chiu F., Chen, Y.: Application of neural networks and Kanos's meth-
od to content recommendation in Web personalization. Expert systems with applications,
Vol 36, 5310-5316 (2009)

13. Chou, P., Li, P., Chen, K., Wu, M.: Integrating Web mining and neural network for per-
sonalized e-commerce automatic service. Expert Systems with applications, Vol 37, 2898-
2910 (2010)

14. Billsus, D., Pazzani, M.: Learning collaborative information filters. International confer-
ence of machine learning, 46-54 (1998)

15. Krstic, M., Bjelica, M.: Context aware personalized program guide based on neural net-
work. IEEE transactions on consumer electronics, Vol 58, 1301-1306 (2012)

16. Biancana, C., Gaspareti, F., Micarelli, A., Miola A., Sansonetti, G.: Context-aware movie
recommendation based on signal processing and machine learning. The challenge on con-
text aware movie recommendation, 5-10 (2011)

17. Devi, M., Samy, R., Kumar, S., Venkatesh, P.: Probabilistic neural network approach to al-
leviate sparsity and cold start problems in collaborative recommender systems. Computa-
tional intelligence and computing research, 1-4 (2010)

18. Gelenbe, E.: Random neural network with negative and positive signals and product form
solution” Neural Computation 1, 502-510 (1989)

19. Gelenbe, E.: Learning in the recurrent Random Neural Network. Neural Computation. 5,
154-164 (1993)

20. Gelenbe, E., Timotheou, S.: Random neural networks with synchronized interac-
tions. Neural Computation, 20(9): 2308 – 2324 (2008)

21. Gelenbe, E., Lent, R., Xu, Z.: Towards networks with cognitive packets. Performance and
QoS of next generation networking. pp 3-17, Springer (London), (2011)

22. Gelenbe, E., Wu, F.J.: Large scale simulation for human evacuation and rescue. Comput-
ers & Mathematics with Applications 64 (12), 3869-3880 (2012)

23. Filippoupolitis, A., Hey, L., Loukas, G., Gelenbe, E., Timotheou, S.: Emergency response
simulation using wireless sensor networks. Proceedings of the 1st international conference
on Ambient media and systems, 21, (2008)

24. Gelenbe, E., Koçak, T.: Area-based results for mine detection. Geoscience and Remote
Sensing, IEEE Transactions on 38 (1), 12-24 (2000)

25. Cramer, C., Gelenbe, E., Bakircloglu, H.: Low bit-rate video compression with neural net-
works and temporal subsampling. Proceedings of the IEEE 84 (10), 1529-1543 (1996)

26. Atalay, V., Gelenbe, E., Yalabik, N.: The random neural network model for texture gener-
ation. International Journal of Pattern Recognition and Artificial Intelligence, 6 (1):131-
141 (1992)

27. Gelenbe, E.: Steps towards self-aware networks. Communications of the ACM, 52 (7): 66-
75 (2009)

28. Gelenbe, E.: Search in unknown random environments. PHYSICAL REVIEW E 82 (6),
061112 (2007)

29. Gelenbe, E. and Abdelrahman, O. H.: Search in the universe of big networks and da-
ta. IEEE Network 28(4): 20-25 (2014)

30. Abdelrahman, O. H. and Gelenbe, E.: Time and energy in team-based search. PHYSICAL
REVIEW E 87, 032125 (2013)

